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Abstract

Test Range Tracking Network Processors

Creating accurate tracks of multiple airborne targets from multiple sensors, in real
time, can be a computationally demanding process. Our approach is to perform
hypothesis testing based upon the traditional method of Maximum Likelihood, but within
a distributed filtering environment. This results in a large reduction in the number of
floating point computations required to generate the complete set of likelihood function
values.

This final report describes results obtained over a 6 month Phase I project. The
primary mathematical operation performed by the distributed filter is matrix
triangularization. Thus, this research focused on understanding algorithms for
performing this operation, as well as their parallelization.

Three methods based on the orthogonal reduction were reviewed. They are the
Householder, Givens, and Fast Givens methods. Gaussian elimination seemed to be an
attractive alternative in that it is less costly than those based on orthogonal reduction,
but this method is not numerically stable and requires pivoting.

An analysis of computational cost was performed for Householder and Fast Givens
methods. Although the Householder method is superior to the Fast Givens method for a
generally dense matrix factorization, the Fast Givens method well outperforms the
Householder in triangularizing the Local Time Update, Local Measurement Update, and
Global Measurement Update matrices of our distributed filter. On the other hand,
triangularization of the filter's Global Time Update matrix was more efficiently done
using the Householder transformation. This is due to the sparse data structure of the
matrix.

The concept of downdating and updating was reviewed along with algorithms from
LINPACK. While the updating process is no different from a total annihilation process
of the newly added observations (appearing as rows of data), downdating is a backwards
process which removes the contribution made by the eliminated observations, from the

I transformed (triangularized) matrix. The cost of downdating was obtained based on the
subroutine "SCHDD" from LINPACK.

The "Sameh and Kuck's" scheme and "Greedy" scheme were reviewed as possibilities
for parallelization. Both schemes were modified in order to best suit the block upper-
triangular nature of the system matrices. Finally, a hardware processing "cell" which
performs a plane rotation using the Fast Givens method, was designed. A linear array of
cells following Sameh and Kuck's parallel scheme was proposed.
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ISummary

ICreating accurate tracks of multiple airborne targets from multiple sensors, in real
time, can be a computationally demanding process. Measurements from each sensor
must first be correlated with each track. Then, after a correct association is made, the
track can be updated to derive a new estimate. A variety of algorithms for performing
these processes of "data association" and "track updating" have been described in the
literature. Our approach is to perform hypothesis testing based upon the traditional
method of Maximum Likelihood, but within a distributed filtering environment. This
results in a large reduction in the number of floating point computatikas required toIgenerate the complete set of likelihood function values.

This final report describes results obtained over a 6 month Phase I project. The
primary mathematical operation performed by the distributed filter is matrix
triangularization. Thus, this research focused on understanding algorithms for
performing this operation, as well as their parallelization.

Three methods based on the orthogonal reduction were reviewed. They are the
Householder, Givens, and Fast Givens methods. Gaussian elimination seemed to be anIattractive alternative in that it is less costly than those based on orthogonal reduction,
but this method is not numerically stable and requires pivoting.

An analysis of computational cost was performed for Houxeholder and Fast Givens
methods. Although the Householder method is superior to the Fast Givens method for a
generally dense matrix factorization, the Fast Givens method well outperforms the
Householder in triangularizing the Local Time Update, Local Measurement Update, and
Global Measurement Update matrices of our distributed filter. On the other hand,
triangularization of the filter's Global Time Update matrix was more efficiently done
using the Householder transformation. This is due to the sparse data structure of the
matrix.

The concept of downdating and updating was reviewed along with algorithms from
LINPACK. While the updating process is no different from a total annihilation process
of the newly added observations (appearing as rows of data), downdating is a backwards
process which removes the contribution made by the eliminated observations, from the
transformed (triangularized) matrix. The cost of downdating was obtained based on the
subroutine "SCHDD" from LINPACK.

The "Sameh and Kuck's" scheme and "Greedy" scheme were reviewed as possibilities
for parallelization. Both schemes were modified in order to best suit the block upper-
triangular nature of the system matrices. Finally, a hardware processing "cell" which
performs a plane rotation using the Fast Givens method, was designed. A linear array of
cells following Sameh and Kuck's parallel scheme was proposed.



1. Introduction

Creating tracks or estimates of the position and velocity (and other dynamical states)
of multiple targets from a network of multiple sensors, in real time, can be a
computationally demanding process. Measurements from each sensor must first be
correlated with each track. Then, after a correct association is made, the track can be
updated to derive a new estimate. A variety of algorithms for performing these
processes of "data association" and "track updating" have been described in the literature.
This is an active area of research, whose goal is to produce tracks with ever increasing
accuracy. Military applications of the research are improvements in weapon system
performance as well as their test and evaluation.

The amount of computation performed in this two step process increases nonlinearly
with the number of targets and the number of sensors. The nonlinearity is due to the
combinatorial nature of the "data association" process, which is portrayed in Figure 1.-.
In this worst case, when there are t targets and each one of M sensors sees all of the
targets, the total number of association hypotheses at each time step could be as high as
tM+ However, if one proceeds track by track, eliminating correctly associated
measurements from further consideration, then the number of hypotheses per track
would continuously decrease. In this case, the total number of association hypothesis at
each time step would be reduced to tM + (t-1 )M + ... + 1m.

As an example, when t=10 and M =3, which corresponds to a typical range scenario
for testing an MLRS rocket with 6 submunitions aboard, there are 10,000 possible
associations but only 3025 when correct associations are sequentially eliminated.
Although this represents a decrease in the number of hypotheses by 69.8%, still the
problem is computationally intensive. At data rates of 120 samples per second, I
hypothesis must be generated and tested every 2.75 microseconds!

I After all possible associations are computed (and filtered) locally at each iteration, the
resultant set of smoothing coefficients must be sent to the global processor and merged
to obtain a set of optimal solutions, each one corresponding to a different association.
The globally optimal one stems from the association which admits the maximum value
for the likelihood function. The set of optimal solutions may be generated by first
deleting an almost upper triangular block of a large matrix (large columns), and adding a
new one corresponding to a different association. Then, Householder transformations or
Givens rotations may be applied to the matrix, putting it into upper triangular form. The
latter two steps are repeated many times until all of the hypotheses have been tested.
Thus, the focus of this research is the development of specific algorithms for performing
the transformations and/or rotations as fast as possible.

U One particularly interesting idea is to first "downdate" the old association under test
directly from the upper triangular matrix, and then "update" it with the new association.
Thus, working on a relatively full and large matrix can be avoided and much

* 2
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I 2. Work Carried Out/Results Obtained

I 2.1 The Decentralized Square Root Information Filter

The Decentralized Square Root Information Filter (DSRIF) was introduced in [1,2].
It is a distributed solution to the constrained linear least squares estimation problem, and
can be used to update and extrapolate tracks. For 1 target, the DSRIF admits the
following matrix structure shown in Figure 2.1-1. As seen, it includes (i)local time
update, (ii)local measurement update, (iii)global time update and (iv)global
measurement update matrices which are block upper-triangular! In Figure 2.1-1,

q = dimension of the process noise vector (typically 3)
n = dimension of the state vector (typically 6 or 9)

* m = dimension of the measurement vector (assumed to be the same for all sensors,
actually m equals 2 or 3)
M = number of sensors, and we assume that each sensor sees all of the targets

For multiple targets, we have the following structures where t is equal to the total
number of targets being tracked by the network

(i) t local time updates which can all be done in parallel
(ii) t2 completely independent local measurement updates which can all be done in

I parallel i.e., there is no recursion
(iii) t global time updates which can all be done in parallel
(iv) tMi l global measurement updates, each corresponding to a different set of
associations of measurements with target tracks. t is equal to the maximum number
of hypotheses.

5
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3 Figure 2.1-1: Matrix Topology for the DSRIF
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22 Survey of Microprocessors

I Microprocessors and math coprocessors that are commercially available in
multiprocessing board sets are listed in Tables 2.2-1 and 2.2-2.I

Table 2.2-1: Math Coprocessors Benchmar_

3 Benchmark
Manufacturer Processor Clock Speed MIPS Speed Price $

____ (MHz) (MFLOPS)

I Cyrix 83S87 20 MHz 556
83D87 33 MHz 994gEMC87 33 MHz 994

Intel 8087 5 MHz 142
80287XL 12.5 MHz 326
387SX 20 MHz 550
387DX 33 MHz 994
i486 33 MHz 667

3 Motorola 68881 20 MHz 68
68882 40 MHz 218

Weitek 3167 33 MHz 995
4167 33 MHz 1,295

I Our survey revealed that currently, several hundred Mflop systems are available for
under 10 thousand dollars. However, a 300 Mflop multiboard set can perform only 825

I floating point operations in 2.75 microseconds (continuing the example from section 1.).
This is approximately I tenth of the total number of floating point computations needed
to time update and measurement update the DSRIF. Thus, there is motivation for
continuing this research in the pages that follow.

*. 7
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I Table 2.2-2: General Purpose Microprocessors

I Clock Benchmark
Manufacturer Processor Speed MIPS Speed Price $

(MHz) (MFLOPS)

Advance Micro AM29050 40 MHz 32 80 4103 Devices Inc.

Cypress/Ross CY7C61 40 MHz 29 805
Technology Inc.

Fujitsu Micro- MB86903 40 MHz 29 5 350
Electronics

I Integrated 79R3000A 40 MHz 33 11 275
Device
Technology Inc.

Intel Corp. i860 40 MHz 57.5 10 567

3 Motorola Inc. 88100 33 MHz 28 5.4 150

Performance PIMM 40 MHz 33 1,3003 Semiconductor

VLSI VL86C020 25 MHz 100
Technology Inc.

I
I
I
I
I
I
3 8
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23 Matrix Upper Triangularization

Householder, Givens and Fast Givens transformation techniques were investigated
during the Phase I work. Analytical expressions for their computational cost in terms of
dimensional parameters were derived. These expressions are useful in deciding which
technique is most efficient.I
2.3.1 Description of the Householder Method

I Following [3], a general matrix, A e R, ", can be upper triangularized.

SA = QR

where Q is an orthogonal matrix, R is an upper triangular matrix with

I R = PkPk.1...P 2PIA

where k=n for m>n or k=m-1 for m5n, and Pi e IR"' is a Householder transformationI matrix.3 
Q = (PkPk...P2Pl) "1,

I where w, is a real column vector and

I WIrwi = 2.

As a first step to triangularization, we annihilate all elements below the main diagonal3 in the first column of A. This is shown as follows:

Let A, PI
= (I - iwitr)A

= A - wiw1trA

I = A - WW1
1r[a1, a2, ...

3 where a, is the jth column of A.

9
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Let

U1 Ir = [a11-s1, a21, a31, ,am

W1 = ;II

where

ws = +(alral)'= +-(Euclidian Norm of al),

3 I = (_2 a-s,)q,

and the sign of s, is chosen to be opposite to that of a,, for numerical stability.
tr ~ m2

W1L81 = 1 (a11 - s1)aj, + E a JI i=2

= M1(s12 - a,1sl)

= MI/TI

3 = l/i1

a,, - w1wl tra, = a,, - M1(all - s,)/Ml = s,

arl" wrWlral = a,,- Alar/M 1 = 0 for r =2...,m

3 where wr is the rth element of w.

Therefore,

a, 2 In0 a 22
A, = PIA=

L 0 am2 "" a $mn

To annihilate all elements below the main diagonal in the second column of A1, the
previous procedure is repeated with w2 = M2U2

"10



I
I where,

U2tr = [0, a 22 - s2, a 32, a 42,..., am2],

I and S2 is the Euclidian norm of the vector which results from the second column of Al,
but exclusive of its elements above the main diagonal. The sign of s2 is taken as
opposite to that of a' 22.

Continuing, we haveI A2 = P2A1 (-- (- w2w2tr)A 1.

A 2 retains the zero elements in the first column and P 2 introduces new zeros in the last
m-2 positions of the second column.

To annihilate all elements below the main diagonal in the third column of A2, the
previous procedure is again repeated, but with

U3 " = [0, 0, a"3 3 - S3, a*43, .... a'. 3]

and S3 is the Euclidian norm of the vector which results from the third column of A2, but
exclusive of its elements above the main diagonal. The sign of S3 is taken as opposite to
that of a" 33. The a" 33 is the element at the third row and third column position in the

i matrix A2.

We continue in this way to zero elements below the main diagonal in column by
column order by applying Householder matrices. Thus the resultant matrix R is an
upper triangular matrix,

SR = Pk '" PIA

Now, go back to the stage of obtaining A,.

i A1 = P1A = (I - W1Wtr)A

3- A - WiWrA

= A - W1(Wlral, Wltra 2 , . lrn

So the jth column of A, is

aj- wltraW=a - .U ltrasjU

11
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I
The reduction of an m x n matrix for m > n, to upper triangular form using

Householder transformations is summarized by the following vector pseudocode, in
Figure 2.3.1-1.

Fork 1 ton
Sk -sgn(ak0 ( a ik)",

Tk - (Sk2 - Skakk) "I

Uktr  -" (0, ... 0 0, akk-Sk, ak+1, k, amk)

akk =S k

Forj = k+ Itorn

=j 7 kUktraj

aj =aj-oju
k

End End

I
Figure 2.3.1-1: Column-oriented Householder reduction

3Although column oriented Householder reductions was discussed, the method can also
be applied in a row oriented format. This alternative has no advantage over the column
oriented format, and therefore was not further investigated.

3 2.3.2 Computational Cost for Householder Reduction

A more formalized Householder algorithm from [4] is shown below in Figure 2.3.2-1.
The algorithm factors an m x n matrix A, overwriting the coefficient matrix with both R
and the vectors characterizing each Householder matrix. During the kth step, we
annihilate m - k elements in the coefficient matrix using a Householder matrix whose
corresponding vector w has m - k + 1 non-zero components. Since the non-zero
components of w do not fit within the space created by the annihilated coefficients, we
store the diagonal of R in a separate array d to make room for the first non-zero
component of w. After executing the following algorithm, the diagonal of R is stored in
d, the remaining elements above R's diagonal are stored above the diagonal in A, and
the vectors w related to each Householder matrix are stored on and beneath the

*diagonal of A.

12



i
I k4-O

for I = ito n ;column I to n
k 4-k+l, if k = m then di -ak and exit I loop

s =(Y ail2)1/2

ifs = 0 then d,-O and gotonext1
t -ak,, r- 1/[s(s+ Itl)]/2, if t < 0 then s--s.
d --s, akk - r(t + s)
ak - rail fori = k+ltom

forj = 1+1 to n
t.-O

t tt+a ikaj for i = k to m
a j,-a -tak for = ktom

next j

next I

1 Figure 2.3.2-1: Householder Reduction Algorithm

The above Householder algorithm annihilates elements column by column in order asIshown below for a (6 x 5) matrix as an example.

x x x x x Istrow
1 x x x x 2ndrow
1 2 x x x 3rdrow
1 2 3 x x 4throw
1 2 3 4 x 5throw
1 2 3 4 5 6throw

The integer number indicates the steps of annihilation. Here annihilation means the
value of an element becoming zero.

Costs of the algorithm in Figure 2.3.2-1 is shown in Tables 2.3.2-1 to 2.3.2-6 for m<n
and Tables 2.3.2-1 to 2.3.2-9 for m>n. We assume that the overhead costs due to
communication between registers, initialization of memory, and transfer is negligible
compared with the cost of arithmetic operations.

13



Given: A = [m x n] dense matrix, m < n

Table 2.3.2-1. Annihilation of 1st column

All the elements below the main diagonal in the first column become zero.

-1, k = 1

S = (Z a,, 2)1/2 = (al, 2 + a2, + + am, 2)
1/ 2  mx, (m-I) +, 1 4

I * al1

r l/Is(s+ It ) I12 I x, 1 +, 1 , 1 +, I sign (abs)

1st column:
all = rt + (sgn(t))s) "sgn" is sign function - returns the sign of argument.

S21 - ".21
at31 ' r"31

a = r.8m, (m+1) x, 1 +, I sign

2nd column: j=i+1=2
I t a,,a,2 + a21a22 + a31a32 + + amam2 m x, (m-I) +

a 12 = a12 " tell
a = a -t.8 2 ,

a32 = a32 ta3,

am2 = am2 - tam, mx, m -

3rd column: j=l+1=3
I = aila3 + a2 ,a, + a ,a3 + + laam3 my, (M-1) +

a13 = a1 3 - 1.811
a33 o a23- 1"821
133 - a33 - 5'31

am3 = am, - t2m mx, m -

4thcolumn: j=1+1=4
t= allal, + a21 a2 + a31a34 + + amlam4 m x, (m-I) +
a 14  = 14 - t1 "11

aa= a24 - 1 2 1

a34= a3, - 1.31

aM, a m -
t
'ml mx, m-

nth column: j=l+=n
t a l l aln + a2 aa2 + a .. +amlamn m x, (m-I) +

n ,. = t-a,,
82n a21, -a21

a3. = a3, - t1131

mn amn - t 'ml mx, m-

14



Table 2.3.2-2. Annihilation of 2nd column

All the elements below the main diagonal in the second column become zero.

I= 2. It = 2

S . ad )1/ = (a222 + a32 
2 + + aa 2)112 (rn-1) x, (m-2) +, I ./

r = 1/[S(S+ ItI1)11/ 2  1 x, 1 +, 1 I. 1 I, sign (abs)

2nd column:
a2= It + (sgn(t))sI

a3 = ra32

a =2 r tn m x, I +, I sign

3rd column: j=l+1=3
t= a22a33 + a32a33 + a42a.3 + + arnzam (rn-1) x, (m-2) +

a2= a23 - t2

a33 = a33 - t3

a43 = a43 -t 4

=r3 a. - tam (rn-i) x, (rn-I) -

4th column: j=1+1= 4

I , 22a2 + 32a3 + 42a4 . ... am~n,4(m-1) x, (m-2) +
a2 a24 - t a2,

a,= a34 - ta3

an4= arn -
t am2 (rn-i) x, (rn-I) -

nth column: j=l+1=n
t a22a,, + a32a3n + a42a4n + +am2amn (m-1) x, (mn-2) +

a.= a~ - ta332

a3n = a3n 1 'a32
a4 . = a4r, - a. 2

amn , a., - tn (rn-I) x, (rn-I)-

15



Table 2.3.2-3. Annihilation of 3rd column

All the elements below the main diagonal in the third column become zero.

= 3, k = 3

S= (E 2) 1/ 332 + a43
2 + + a 2) 112  (m-2) x, (m-3) +, I I

t =a33

r = l/Is(s+ It1l)]/2  1 x, 1 +, 1 1, 1 +, 1 sign (abs)

3rd column: j=l+1=3
a33 = r~t + (sgn(t))sJ
a43 = ra43
a53 = r-a53

a. = r. (m-1) x, 1 +, 1 sign

4thcolumn: j=l+1=4
I = a3a4 + a43a44 + a53a54 + + amlar (m-2) x, (m-3) +
a4 = a34- ta 33
144 = a44 ta 4 3

a54 = av t 2-53

a,, = an - tam3 (m-2) x, (m-2) -

5th column: j=l+1=5
t = a33a5 + a43a4 5 + a3a5 + + awaa, 5  (m-2) x, (m-3) +

a35 = a35 - (a33
a4, -- a4. - t 2a43

a55 = aS5-1."53

aU = aC- tar, (m-2) x, (m-2) -

nth column: j=l+1=n
t = a33a3n + a43a4n + a53a5 n + + am~amn (m-2) x, (m-3) +
a3, = a3 - ta 33

a4n = a4 n- t-a4 3
a5. = a5s- a53

amn = a - Caw (m-2) x, (m-2) -

Successive columns are processed in a similar manner.
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I 'Table 2.3.2-4. Annihilation of m-3 column

3 All the elements below the main diagonal in the m-3 column become zero.

I - m-3, k - m-3
M3 s(E a. 2)112  (arm3 2 + a-..3 2 + + amn- )/ 4 x, 3 +

3r a1/(sS+ It 1)11/2 1 x, I +, 14, 1, 1 sign (abs)

m-3 column: j I + I=m-3
a, 3 .m3 = T1 + (Sgn(t))SI

in-2 column: j =lI+ I=m-2

+ aM.m.f3am.3m.I + amm3am.2m. ,

amlm-2 , aml-2 - 4 x, 3 +-

anm2 ' am.2 - tam2.m3
a .A2 am., m. I n-.1 3Iamm.2 5 m.,.,-ml m 4 x,4

m-1t column: j = I+ I m-
t * ml -3 ml - + am .m3am .M-

+ am.lm3am.ln + amm3ami- 4 x, 3 +

=m2m- am .m-1 t m m-3
am~lm- = a.-,.,n ~ ~ -

aMM- = a M.- -t a m 4 x, 4-

ntIoun =+~
tI ml -a -n + m2m3 r .

* 17



ITable 2.3.2-5. Annihilation of m-2 column

All the elements below the main diagonal in the m-2 column become zero.

I - in-2, k - in-2

s a ll (am2m22+a-'l- r~ 1 3 x, 2 +,14

r =I/IS(s4 IzI)ll/2 lx, I ,1.i.I sign (abs)

m-2column: jal+lam-2
S -X rit + (sgn(t)sl

*w~- a ra-i
aawn2 mr'o,,2

4 x, I+ lsipn

in-I column: j =I + I -in-I

+ a1 . 2am + l x, 2 +

am2 =- am.l -
t tm-im-2

a,- = ~m.- tm.m_2I =M- a. 1  ta.. 3 x, 3-

nth column: j-l+I-n

+ a'u'u.2 amun 
3 x, 2 +

aul2 a,,.2,, tam2.m-2I :-).a anJ. a.^2

L m.n a...n tm.m2 
3 x, 3 -

I1



I
Table 2.3.2-6. Annihilation of m-1 column

All the elements below the main diagonal in the m-I column become zero.

I m-1. k = m-I

s = (E ad 2) 1/ 2 = (am... + a m.,2)1/ 2  2 x, 1 +, 1 ,/

t =

3 r = /S(S+ It1) 11/2  1 x, I +, 1 I, +, Isign (abs)

M-I column: jl+]=m-]
, rt + (sgn(t))s]

am..m-1 = ramm 3 x, I+, I sign

nth column: j=l+I=n
t= am. rnL +am.m.am.n 2 x, I +

am.l n = am~.n - tam.m.I
am.n =amn 1lam .m.l 2 x, 2-I

The upper triangularization of an m x n matrix for m<n is complete at this step!
However, the upper triangularization is not done if m is greater than n. Therefore, a few
more steps of annihilation are presented for a matrix in which m is greater than n.

II
I
I
I
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3 Table 2.3.2-7. Annihilation of n-2 column

All the elements below the main diagonal in the n-2 column become zero.

3 I - n-2. k -n-2

s =(E a,,2)1/2 = (a,,.2.,.22 + a,.,.,.2
2 + + a.n2)/ (m-n +3) x. (m-n 2) +, 1.

r I/,s(S + It )'/ 2  1 x, I1,1 14. 1 +, 1 sign (abs)

n-2 column:

amm.2 -r'om n-2 (rn-n +4)x, 1 +,1sign

n-I column: j=l+1=n-l

+ ,, + ar~n2m4- (m-n+3) x. (rn-n +2) +

=n- n -I = n2 n. 1 n2.n-2

a..I= am,.!- -tam n*2 (rn-n + 3) x, (rn-n + 3) -

3 nth column: j-l41 =n
t a an2n2a-. + a~~-a-

+ + .n. (m-n+3) x. (m-n+2) +

I=a,, 1n~ - aln2

3 m,, = m,, - am~n.2 (m-n +3) x. (m-n +3) -

I2



I
Table 2.3.2-8. Annihilation of n-i column

All the elements below the main diagonal in the n-I column become zero.

I - n-1, k - n-I

U ( l) = (an'ln'
2 + aa,_1

2 + + am.n1
2

)1/
2  (m-n+2) x. (m-n+ i) +, I I

Ir - l/Is(s+ Itl) 112  l x. 1+, 1 /. 1 +. I sign (abs)
*.-I column:

~ao* 1 .1 " it + (sgn(t))s]

a m n. = rsm .ni (m -n +.3) a, I + I sign

nth column: j - Il= n
t - anlnla~~ + a~~a~

.. + a m1 ,n~ ar~ ( -n +w 2) a, (m -n + lI) +

I., = an1~n - la~.

3am~ n  = amn -
t  ... i (m-n+2) x, (m-n+2) -

I Table 2.3.2-9. Annihilation of nth column
3All the elements below the main diagonal in the nih column become zero.

£ * ( - a ,1
2)1 2  

= (a n2  + a n l n + + a 2 ) ,'
2  (m -n~ l) x , (rn-n) + . l 4

I i-k

t =a
r I/Is(s+ ItI)]/ 2  1x. I +, 14, I+, 1 sign(abs)

nth column:
= rt + (sgn(i))s]

an~ln an. n  a n.

amn  =rm.n (m-n+2) x, I +, I sign

The upper tria ngularization of an m x n matrix for m>n is complete at this step!

* 21
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I Now we collect all the cost terms along with the arithmetic operations from the
foregoing procedures (Tables 2.3.2-1 to 2.3.2-6) and summarize them in Table 2.3.2-103 for the case m < n.

Combining the costs of arithmetic operations, we have the total cost (Table 2.3.2-11)
for upper triangularization of an m x n matrix (m<n). Here, we assume that the unitcost for subtraction is the same as that for addition, and the unit cost for division is the
same as that for multiplication.

I Again, collecting all the cost terms from Tables 2.3.2-1 to 2.3.2-9 and summarizing
them, Table 2.3.2-12 is a summary for the case m>n.

I Combining the costs of arithmetic operations, we have the total cost (Table 2.3.2-13)

for upper triangularization of an m x n matrix (m>n).

I
I
I
I

I
I
I
I

* 22
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m
3 As we observed, the cost of an upper triangularization by Householder reduction

depends only on the dimension of the matrix; the structure of data within the matrix has
no effect on the cost. As we will see in a later section, the structure of data greatly
affects the cost of Fast Givens or Givens reduction.

The costs for triangularizing the Local Time Update, Local Measurement Update,
Global Time Update, and Global Measurement Update system matrices are easily
obtained by substituting the representative dimensional parameters into the cost
equations of Tables 2.3.2-11 and 2.3.2-13. In substituting these parameters, it is
important to note that the Local Time Update system matrix is of type m < n, while the
other three system matrices are of type m >n.I
2.3.2.1 Cost for a Local Time Update

I This system matrix is m x n with m < n. Here, m represents (q + n) and n represents
(q + n + 1). Therefore, Table 2.3.2-11 is used to calculate the cost of triangularizing this
system, and Table 2.3.2.1-1 shows the total cost.

I Table 2.3.2.1-1. Total Cost for Upper Triangularization of an LTU.

Matrix dimensions: [(q+n) x (q+n+l)1

Operation Cost
X & + (1/3)12(q+n) 3 + 6(q+n) 2 + 13(q +n) - 21]
+ &- (/3)12(q + n) 3 + 3(q+n) 2 + 4(q+n)- 91

I 2(q + n)-I
sign 2(q + n) - 1

2.32.2 Cost for a Local Measurement Update

This system matrix is m x n with m>n. Here, m represents (n+m) and n represents
(n+ 1). Therefore, Table 2.3.2-13 is used to calculate the cost of triangularizing this
system, and Table 2.3.2.1-1 shows the total cost.

I Table 2.3.2.2-1. Total Cost for Upper Triangularization of an LMU.

Matrix dimensions: ((n + m) x (n + I)]

Operation Cost
x & + In+11(2(n+m) - (n+ 1) + 4 + (1/3)n13(n+m)-n+11)
+ & - (n+l)(n+2m+2)/2 + n(n+l)m+(1/6)(4n-1)

4 2(n + l)3 sign 2(n + 1)

25I



I

I 2.3.2.3 Cost for a Global Time Update

This system matrix is m x n with m > n. Here, m represents (Mq + n) and n represents
(q+n+ 1) in case A, while m represents [(M+ 1)q+n] in case B. Therefore, Table 2.3.2-
13 is used to calculate the costs of triangularization in both cases A and B, and Tables
2.3.2.3-1 and 2.3.2.3-2 show the total costs for case A and case B respectively.

Table 2.3.2.3-1. Total Cost for Upper Triangularization of a GTU, Case A.

Matrix dimensions: [(Mq+n) x (q+n+l)]

Operation Cost

x & + (Mq+n)(q+i+lXq+n+2) - (1/3)q+n+l)[(an+1) 2 - 101
+ &. (1/3Xq+n+1)[3(Mq+nXq+n+1) - (q+n+1) 2 + 4)

2(q+n+1)
sign 2(q + n + 1)

3 Table 2.3.2.3-2. Total Cost for Upper Triangularization of a GTU, Case B.

Matrix dimensions: {[(M+l)q+n] x (q+n+l)}

Operation Cost
x & + [(M+l)q+nJ(q+n+l)(q+n+2)-(1/3)(q+n+l)[(q+n+1)

2 - 10
+ & - (1/3)(q+n+l)3[(M+)q+nl(q+n+l) - (q+n+1)2 + 4}

I2(q +n +1)
sign 2(q+n+l)

3 2.3.2.4 Cost for a Global Measurement Update

This system matrix is m x n with m>n. Here, m represents for (M+ 1)n and n
I represents (n+ 1). Therefore, Table 2.3.2-13 is used to calculate the costs of

triangularization, and Table 2.3.2.4-1 shows the total cost.

I Table 2.3.2.4-1. Total Cost for Upper Triangularization of a GMU.

Matrix dimensions: [(M+ l)n x (n+l)j

Operation Cost
x & + (M + 1)n(n + 1)(n + 2) - (1/3)(n + l)(n + I)2-10I
+ & - (I/3)(n + 1)13(M + I)n(n + l)-(n + 1)2+41
I 2(n + 1)

sign 2(n + 1)

26
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II
2.3.3 Description of the Givens Method

Householder transformations are very useful for introducing zeros on a grand scale, i.e.,
the annihilation of all but the first component of a vector. However, in many
computations it is necessary to zero elements more selectively. Givens transformationsIare the tools for this application.

The QR factorization of a matrix, A c IR " , can also be computed using the Givens
method [3]. The Givens transformation matrix, also called the plane rotation matrix Gij
e Rm"m, has the following form:

II
1

G = cos ,j sin Opj
-sin €, cos 01

II

with sine and cosine terms in the ith and jth rows and columns as shown above.

A given m x n matrix, A, can be upper triangularized in the following manner.

r c1 2a I + s2a2
-siva + c a2

A 1 = G12A = [ a 3  
]

L an

where c12 = cos, 12, S12 = sino12, and a, = ith row of A.

Choose o12 such that -S12aj + c12a21 = 0. This means that the first element in the
second row of A, becomes zero. We don't actually calculate o,2 but only its sine and
cosine values. The equation implies that tano1 , = a21/a,,. Therefore,

S = a, 1/(a 2
11  + a221) V',

c= a,,/(a2
11 + a2 P

27



Thus, A1 has a zero in the (2,1) position and the elements in the first two rows now

differ, in general, from those of the given matrix A, while the remaining rows are the
same.

To make the (3,1) position zero, we calculate G3A,, which produces A2 and modifies
the first and third rows of A, while leaving all others the same; the zero produced in the
(2,1) position in the first stage remains zero. The angle 013 is now chosen such that the
(3,1) position of A2 would be zero. Continuing in this fashion, zeroing the remaining
elements in the first column, one after another, and then zeroing elements in the second
column in the order (3,2), (4,2), ... , (m,2), and (4,3), (5,3), ... , (m,3) for the third column
and so on. In all, assuming m > n, we will use (m-I) + (m-2) + ... + (m-n) plane
rotation matrices and the result is that

GA = Gnm ... G13G12A = R

is upper triangular. The matrices G are all orthogonal so that G and G' are also
orthogonal. With Q = G-1 the given matrix A will be expressed as A = QR.

Based on the operation discussed above, we have a pseudocode for the Givens
reduction as shown in Figure 2.3.3-1.

For k = 1 to min{m-l,n}
For i = k+ torm

Ski =a,,/(a _k + a Jky

cki = akk/(a2kk + a2ik)

Ak= ckak + SO,

a = -sklak + c,

End
End

Figure 2.3.3-1. Givens Reduction

Note that in the update of a, it is the current ak that is used, not the new a, which has
just been computed and is denoted by dk.

28



2.3.4 Description of the Fast Givens Method

As the name indicates, this method is derived from the Givens method. The
calculations in the Givens reduction algorithm are rearranged so that they can be
performed with "Householder speed" in principle. Following [5], the idea is to construct
a matrix M c Rmx" such that

MA = S

is upper triangular and such that

MMr = D = diag(dl,...,d,), di > 0

Since D"12M is orthogonal, it follows that

A = MS = (D-'/ 2M)'(D'1/2S) = (MtrD'1/2)(D'l/ 2S)

is the QR factorization of A.

As we observed in the Givens reduction procedure, i.e., G, 2A = A,, only two rows of
elements are altered in each transformation step. In this example, the first and second
rows of A are altered. Therefore, the details of the computation can be explained at the
2-by-2 level. Let x = (X,X 2 )Ir and D = diag(d1, d2) where d,, d, > 0, and define

Ml = [, 1]

Observe that

Mix = [J6xi + x2
IX 1 + atlX21

and

MDM tr = [d 2 + old 21 d1/3 + d2a1]
d,01 + d2 ' 1 d, + al2d2

If x2  0 and a, = -x,/x, and p, = -Ot,/d I, then

M,= [x(1 + TI) ]
0

M1DM t r = d2(1 + 0) 0 I

0 dl(l + 2)

29
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I where y1 = -al1 = (d2/d 1)(x1 /x2 )2

Analogously, if we assume x, * 0 and define M2 by

M2 = 1  a2  62 = "X2/xI, a2 = -(dl/d 2)p2

then 
M 2x= [xIO +Y2)]

H and

M2DMtr = [dl(1 + Y2) 0 ]
0 d2(1 + Y2),

where Y2 = -a2 = (d,/d 2 )(x2 /x) 2.

Notice that the y, satisfy y y, = 1. Thus we can always select Mi in the above so
that the "growth factor" (1 + y ) is bounded by 2. Matrices of the form

* 0,H 1] M 2 [*II a2]

satisfying -1 < aB1 < 0 are referred to as Fast Givens transformations. Recalling the 2-
by-2 Givens transformation matrix,

G oCos 0, sino o
-sin 01 cos ,1 9

we notice that premultiplication by a Fast Givens transformation involves about half the
number of multiplies as premultiplication by a Givens transformation. As an example,
let A be a 2 x 3 matrix. Then premultiplication by a Fast Givens transformation MIA or
M2A, requires 6 multiplication and 6 addition operations, while 12 multiplication and 6
addition operations are needed by a Givens transformation. Another important
observation is that the Fast Givens reduction does not require any square root
calculations as the Givens reduction does. Therefore, the Fast Givens method is
preferable to the "ordinary" Givens method, and only the Fast Givens method was
investigated further.

I
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The Fast Givens algorithm from [5] is shown below in Figure 2.3.4-1. It overwrites the
matrix A with MA where MA is upper triangular and MMT = diag(dl,..,dm).

di:= 1 for i = 1,...,m
for q = 2,...,m

for p = 1,2,...,min(q-l,n)
ifaqp = 0 thena = 0, P = 0

next p
if aqp * 0

then
a = -p/aqp, 13 = -adq/dp, y = -a 3
if y < 1

then
Sapp := [1[ app ... apn

aq, ... aqn 11 al aqp ... aqn
interchange dp and dq.
dp:= (I+y)dp, dq: (l+y)dqI else
interchange a and P.3 a := I/a, 1 p:= li, Y := l/y

I~~ ~~~ [ap '.." naqn  " 1[app ... ap.

qcp~ .* qn IaI qp - qnI

dp := (l+y)dp, dq := (l+y)dq
end

end

Figure 2.3.4-1. Fast Givens Algorithm

The pattern of annihilation by the algorithm is row order as shown below for a 6 x 5
I matrix as an example (Figure 2.3.4-2).

x x x x x lstrow
1 x x x x 2ndrow
2 3 x x x 3rdrow
4 5 6 x x 4th row
7 8 9 10 x 5throw
11 12 12 14 15 6throw

Figure 2.3.4-2 Annihilation Pattern

I



I The cost for upper triangularization of a matrix by Fast Givens reduction is obtained
by counting the arithmetic operations in the algorithm shown in Figure 2.3.4-1. Note that
instructions under the "else" statement in the algorithm require more arithmetic
operations than those under the "then" statement by 3 counts of the division operation.
We assume an equal probability of execution of those statements (else and then). We
also assume that the overhead cost of communication between registers, initialization of
memory and transfer is negligible compared with the arithmetic operation cost.

I 2.3.5 Computational Cost for Fast Givens Reduction

The cost calculations for the Fast Givens Algorithm of Figure 2.3.4-1 are shown in
Tables 2.3.5-1 to 2.3.5-3. The elements marked as 1, 2, 3 in Figure 2.3.4-2 are
annihilated in these tables.I
Table 2.3.5-1. Annihilation of element marked as I

Idi for i = 1....m
q =2 Annihilation of 2nd row and

P= I ;lst column position (marked as 1)
a = -l/2

3 =-d2/d,

r= -a-3 2x, 2--,3 sign

ifr< 1 1-

I [ a, a, 2 a,,
1 aJI a,, a., anJ 2n x, 2n +

dp , dq ;interchange
d= (I + r)d,
d= (1 + T)d, 2 x, 2 +

else
a "B ; interchange
a=I/a, B = I/B, r= I/r 3+

[ 1 air a,, a,2 a1 n]
p 1.1 a,) a22  a2nJ 2n x, 2n +

d= (1 + r)d,
d2 = (I+r)d2  2 x, 2 +

I

I



I
Table 2.3.5-2. Annihilation of element marked as 2

q=3 ; 3rd row
P 1 ; 1st column

Sa =-a,,/a3,

B = -a3/d
r = -a.B3 2 x, 2 +, 3 sign

Ifr _<l 1-

[ B 1J[ a,, a12  a1l]
1 al a3, a32 -a 3nJ 2n x, 2n +

3 dp 4- dq
d= (I + r)d l
d 3  (1+ 7)d 3  2 x, 2 +

else
a = 1/B

13 =3 r =1/i 3 +

1 a31 a32w a3ni 2n x, 2n +

d, = (1 + T)d13 d3 = (0 + )d3  2 x, 2 +

33



I

I Table 2.3.5-3. Annihilation of element marked as 3

q=3 ;3rd row
p = 2 2nd column

a a = -a 22 /a 32
B = -ae "d3/d 2
'r = -a1 2 x, 2 --, 3 sign

Ifr_<l 1-

I [BI][a,2 a23 ..-a2,]
Sa I a32a33 " a3n' 2(n-1) x, 2(n-1) +

I dp - dq

d2 = (1 + r)d2
3 d 3 = (1 + T)d 3  2 x, 2 +

else36
B = 1/a1/-

3 r=1/r 3 +

[ a[ a22 a 23 a2n1

li a 32 a 33  a3n] 2 (n-1) x, 2(n-1) +

d2 = (1 + r)d 2
d3 = (1 + r)d 3  2x, 2 +

34
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I

I Now, we calculate the cost of upper triangularization of a dense m x n matrix.
Recall that Fast Givens reduction is done by annihilating one element at a time as
shown in Figure 2.3.4-2. Following the algorithm of (Figure 2.3.4-1), and collecting cost
terms along arithmetic operations as in the above sample procedure, we have a summary
of cost for matrix upper triangularization. The column data in the table represents the
total cost of annihilation of all the elements in the respective row of the matrix. Tables
2.3.5-4 and 2.3.5-6 show the summary of cost for the cases m < n and m > n respectively.
The total cost for triangularization is included in Tables 2.3.5-5 and 2.3.5-7 for m<n and
m>n respectively. Here, we assume that the unit cost for a division and multiplication
operation is the same, and the unit cost for subtraction and addition operations is the
same.
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I

2.3.5.1 Cost for a Local Time Update

3 The LTU matrix data structure is shown in Figure 2.3.5.1-1.

3 Matrix dimensions: i(q+n) x (q+n+1)l

q n I

q x x x 0 0 00 X

O x x 0 o 0 0 0 0 x
0 0 x 0 0 0 0 0 0 x

x xx x xx x x x x
0 x X 0 x x x x X

n o o x 0 0 x x x x x

0 0 0 0 0 0 x X x
S0 0 0 0 0 0 x x
0 0 00 0 0 0 0 x x

Figure 2.3.5.1-1. LTU Matrix Structure

The "x" marks in the figure represent non-zero data, and the "o" represents a zero
value. As we see, the matrix is not dense. To upper triangularize this matrix, we select
the non-zero elements ("x" marked) below the main diagonal and annihilate them one by
one at a time. Table 2.3.5.1-1 shows a summary of cost required to annihilate all theg elements below the main diagonal arranged along the row order.

Combining the cost terms for the multiplication and division together, and the cost
terms for the addition and subtraction together and simplifying, we have a total cost for
a LTU matrix upper triangularization in Table 2.3.5.1-2.
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2.3.5.2 Cost for a Local Measurement Update

The LMU matrix data structure is shown in Figure 2.3.5.2-1.

Matrix dimensions: l(n+m) x (n+ i)l

In !

x X X x x x X
0 x x x x x x

n 00 x x x x
0 0 0 x x X
0 0 x x
0 0 0 0 0 x X

m x x .x : X x
x x X x x

Figure 2.3.5.2-1. LMU Matrix Structure

The 'x marks in the figure represent non-zero data and the "o" represents a zero
value. As we see, the matrix is not dense. To upper triangularize this matrix we select
the non zero elements ("x" marked) below the main diagonal and annihilate them one by
one at a time. Table 2.3.5.2-1 shows a summary of cost required to annihilate all the
elements below the main diagonal arranged along the row order.

Combining the cost terms for the multiplication and division together, and the cost
terms for addition and subtraction together and simplifying, we have a total cost for a
LMU matrix upper triangularization in Table 2.3.5.2-2.
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I 2.3.5.3 Cost for a Global Time Update

The GTU matrix data structure is shown in Figure 2.3.5.3-1. There are two cases ofI system formats (case A and case B). The difference between the two is that case B
includes the extra data block labeled BLOCK E in Figure 2.3.5.3-1.

Case A - Mamrix dimensions: I(Mq+n)xK(q+n+l)j
Case B - Matix dimensions: I(Mq+n+q) x(q+n+I)J

q 
n I

q oK x x x xX X x x K

0 00 X X x x X X XX K

x K K K K K X X X K x K

00ox X K X xX X X KX X x K -~I (MiX BLOCK A: ttq+n+q) x (q+n+1)l

0 0 K K K K x K K K X .K K

0 0 K K X K K K X X K K

B LOC K A

q K K K K K K K K X K X K

0 0 K K K K K x K K K K K

0 0 K K K X K K K K XK

q 0 K K K K K K K K K K K K BLOCK BIq x(q+ n+1)]

B 1. 0) C K B

In-q K KX K 00K K K K Kx K K K

K K K 0 0K K K K xX K K BLOCK C: in xq]

K K K 0 0 0 0 K K K KLC D- Inxfl1

K K K 0 0 0 0 K K K K K K L3K IXfX)
q 00K 0 00 0 0 0 0KX

0 000 00 00 00 0 0K K

BLOCK C B LOC K D

K K K 0 00 0 0 000 C) K

q 0 x K 0 0 0 0 0 0 0 0 0 K BIOCKE. Iq x(q+n+)I

B BLOC K E

Figure 2.3.5.3-1. GTU Matrix Structure
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The "x" marks in the figure represent non-zero data and the "o" a zero value. As we
see, the matrix is not dense. To upper triangularize this matrix we select the non-zero
elements ("x" marked) below the main diagonal and annihilate them one by one at a
time. Here, we make the assumptions that Mq is larger than q+n+ 1, i = M-5 for n =
3q, and i = M-4 for n = 2q. We first calculate the cost for an annihilation of each
block and then combine all of the block costs ,c-ording to each case. Table 2.3.5.3-1
shows the total cost for a triangularization of block A for both cases of n=3q and n=2q.
The total annihilation cost for each block, B, C, D and E is included in Table 2.3.5.3-2.

So far we have obtained all the cost functions for each building block. Combining
the cost functions from each block and sorting the resulting functions according to the
variable q, we have the total costs for the system cases A and B in Tables 2.3.5.3-3 and
2.3.5.3-4 respectively. Note that there are i identical blocks of Block B type in the
system (Global Time Update), where i was taken to be M-5 for n=3q, and M-4 for
n=2q previously.
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I

I 2.3.5.4 Cost for a Global Measurement Update

The GMU matrix data structure is shown in Figure 2.3.5.4-1.

Matrix dimensions: J(M-n+n) x (n+1)j

ni 1

I -
O

000 X X X X 000 X XX K
ox x x x x x x x x xX x x
0 o ox x x x x 0 o x x x x x

I o o o x x x x n o x x x

0 a o x x x 0 0 0 x x

0 0 0 0 0 x x o o 0 0 o x x

I X X X X•M-n Standard Block

0 X X X x X x
n o o x x x x x

I0 0 0 x X x x

0 0 0 0 x x x

0 0 000 X X

X XX X XX X X

0 1 X X X x

n o o x x x x x
0 a 0 x x x x

0 0 0 0 X )

Figure 2.3.5.4-1. GMU Matrix Structure

The "x" marks in the figure represent non-zero data and the "o" a zero value. The
total cost for upper triangularization of this GMU matrix is essentially the same as M
times the cost for putting zeros into all of the non-zero elements ("x" marked) of the
standard block. Again, applying the reduction procedure shown in Tables 2.3.5-1 to
2.3.5-3 for the cost calculation, we have a summary of cost for the standard block in
Table 2.3.5.4-1. Table 2.3.5.4-2 shows the total cost for an upper triangularization of the
GMU matrix. The element at the location of row n+ 1 and column n+ 1 will not be
annihilated. Therefore, we subtract the cost for annihilation (filling a zero) of the
element from the cost for M standard blocks.

46

I I i i i I I I l l l imrrt--



I
I - --___ __ __

Ii
I

c c
++

I
++

,- c - c
V) c c c

+ ++ +

C'

+ +

V + s+ E

I
I N - i F r % :

M

V °-

4 "4

+ +

1---- C- A

N cE4en

I ~ CCCNNC+



I

U 2.3.6 Comparison of Costs for Fast Givens and Householder Methods

So far we have obtained total cost functions for the four types of system matrices as
well as for a general m by n dense matrix using the Fast Givens method and the
Householder method. Table 2.3.6-1 shows a total cost comparison between two methods
for a 30 by 10 dense matrix. The comparison on the four types of system matrices, LTU,
LMU, GTU, GMU with the specific dimensions shown in the table is included in Table
2.3.6-2.

From the above comparison tables, we see that the Householder method is superior
to the Fast Givens method for a general dense matrix. The Householder method,
however, is inferior to the Fast Givens for the system matrices except the Global Time
Update system. This is due to the system matrix structure being non sparse. In other
words, the cost of Householder reduction is a function of matrix dimensions only, while
the cost of Fast Givens reduction is a function of matrix dimensions and the matrix data
structure. Another disadvantage of the Householder reduction method is that it requires
square root operations while Fast Givens does not. Therefore, we adopt the Fast Givens
method over the Householder method for the application at hand.
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2.4 Matrix Downdating and Updating

The process of downdating/updating the transformed (triangularized) matrices is
considered. This method is very useful because it drastically reduces the computational
cost in matrix factorization (or triangularization). Rather than repeating the whole
computing process for a new matrix which is formed by either adding new rows or
deleting existing rows from an existing matrix, we can easily obtain a new transformed
matrix for a fraction of the total cost by simply updating the existing transformed matrix.

2.4.1 Cost of Downdating

Downdating refers to a back process which removes the contribution made by the
eliminated rows (data) from the original transformed matrix in a least squares problem.

Let A be a square matrix of order p and positive definite. Then A has a Cholesky
factorization of the form

A = R'rR

where R is an upper triangular matrix. Now, A is modified in a simple manner to form
a new matrix A' whose Cholesky factorization is needed. Then we express A' in the
following form,

A' = A- xxtr

where x is a vector with a length of p which is removed from A. This modification is
called downdating.

If X c Rv and y c R R have the form

then the downdating algorithm computes the factor corresponding to X' and y'; i.e., a
least squares problem with a row removed. The row vector xt' and a scalar qn are
removed together from X and y respectively. The relationship between matrix A and the
matrix X can be explained with a least square problem. We wish to determine a b
vector of length p such that

p2 = Iy -Xb 2  Eq. la

is minimized (here I I is the Euclidean vector norm). This problem can be solved by
forming the matrix

50



(X,y)"(X,y) =[A c]

and computing its Cholesky factor Rz]
O0 .

Then Rb = z and p2 is the residual sum of squares in Eq. la.

With this basic understanding, we review a subroutine program called "SCHDD"
from UNPACK [6]. This subroutine downdates the Cholesky factorization A = RUR of
a positive matrix A to produce the Cholesky factorization R'R' of A' which is A-xx" ,
where x is a vector. Specifically, given an upper triangular matrix R of order p, a row
vector x of length n, a column vector z of length n, and a scalar tj, this subroutine
SCHDD determines an orthogonal matrix U and a scalar C such that

U[Rz =[ R'
0 1x t r  t71

where R' is upper triangular. A residual norm p associated with z is downdated
according to the formula p'= ,/(p 2 _ C2), if this is possible. If R and z have been
obtained from the factorization of a least squares problem, then R' and z' are the factors
corresponding to the problem with the observation (x,rq) removed.

Using the subroutine "SCHDD", we calculate the cost of downdating one observation
(a row vector) from the existing observations. The cost at each step of the subroutine is
as follows:

1. Solve for A from the system, RtrA = X A; Vector

R = (n x n) = r1l r12 r13  ... r1n z = z,
0 r 22  r3 . . . r2n Z2
O O r33  . . r3n Z3
0 0 0 ... r4, Z4

0 0 0 ... rnn Zn

A = (lxn) = [a1 a2 a3 ... a]
x = (1 x n) = [x1 x2 x3 ... XnI

By back substitution, the vector A is obtained.
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S(1) 4= a, xl/rI1  +

s(2) 4= a2 = (x2 - r 2a,)/r22 1+, I x, I -

s(3) , a3 = (x3 - r13a, - r23a 2)/r33 1 +, 2 x, 2 -

s(4) 4= a4 = (x4 - r14a, - r2a 2 - r4a3)/r44 1+, 3 x, 3 -

s(n)' * a. - (xn - rinal - r2na 2 - r3,a 3 - ... - rlan0.1)/ran 1 +, (n-i) x, (n-i) -

Subtotal Cost: n +, n(n-1)/2 x, n(n-1)/2

2. Norm of A (or S): n x, n-1 +, 11

I Norm = (a 2 + A2
2 +...+A n x, (n-) +, 1

if Norm > 1, then quit.

I 3. a = /(1 -Norm 2) Ix, 1-, Ij

4. Determine the plane rotations (transformations).

For ii = 1 to n
i = n-ii+l n +,n-
scale = a + Is(i) n + , n abs
pa = a/scale n
pb = s(i)/scale n
Norm = J(pa2 + pb2)  2n x, n +, n ,/
c(i) = pa/Norm n
s(i) = pb/Norm n
a = scale-Norm n x

END

5. Apply the transformations to R. (To get R', where R' is a downdated R.)

For j = I to n
xx = 0
for ii = 1 toj

i = j-ii+ 1 n(n+1)/2 -,2(n+1)/2 +
T = c(i)'xx + s(i)R(ij) n(n+1) x, n(n+1)/2 +
R(ij) = c(i)R(ij) - s(i)'xx n(n+ 1) x, n(n+ 1)/2 -
xx=T

END
END
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6. Apply the transformations to z. (To get z', where z' is a downdated z.)

For j = 1 to nz (nz is number of vectors to be downdated, nz= 1 for our purpose)
zeta = y(j)

For i = I to n
z(ij) = [z(ij) - s(i)-zeta)/c(i) n -, n x, n +
zeta = c(i) x zeta - s(i)z(ij) n -, 2n x

END
* END

So far, we have collected step by step the costs above. Combining the cost terms along
the arithmetic operations, we have a cost for a downdating with one observation in Table
2.4.1-1.

Table 2.4.1-1 Cost of downdating with one observation removed

Operation Cost

x & + n(5n+ 29)/2 + 1
+ & - n(5n+ 17)/2
I/ n+2

sign (or abs) n

where n is the order of the upper triangular matrix R.

The Global Measurement Update matrix consists of (M+ 1) standard matrices. The
dimension of the standard matrix is [n x (n+ 1)]. The cost of downdating one standard
block is now obtained. Since the standard block represents n observations (rows), the
downdating cost with this standard block would be n times the cost obtained above for
downdating one observation. Table 2.4.1-2 shows the cost of downdating with one
standard block removed.

Table 2.4.1-2 Total Cost of downdating with a standard block removed

Operation Cost

x & + (5/2)n3 + (29/2)n2 + n
+ & - (5/2)n3 + (17/2)n2
J n2 + 2n

* sign n2
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2.4.2 Cost of Updating

The cost of updating, with one observation (a row vector) added, is obtained.
Assume an observation vector whose length is n+ 1. Then the cost of updating with this
vector will be the same as the cost of total annihilation of this observation vector.
This cost can be easily obtained using the procedure in section 2.3.5.

The cost of updating the GMU system with a standard block is the same as the cost
required to fill zeros into the block, and this cost was already shown in Table 2.3.5.4-1.
Simplifying the table, we have a total cost for an updating with a standard block addedI as in Table 2.4.2-1. Note that the standard block is [n x (n+ 1)] in dimension.

Table 2.4.2-1 Cost of Updating with a Standard Block

3 Operation Cost

x & + (1/3)n3 + (23/4)n2 + (179/12)n
+ & - (1/3)n 3 + (7/2)n2 + (49/6)n
sign (3/2)n(n+3)

2.4.3 Cost of Downdating and Updating

The total cost of downdating and updating with a standard block is the sum of the two
costs obtained in sections 2.4.1 and 2.4.2. Table 2.4.3-1 shows the overall cost of
downdating and updating with a standard block (n observations modified).

Table 2.4.3-1 Cost of Downdating and Updating with a standard block

Operation Count

x & + (17/6)n3 + (81/4)n 2 +(191/12)n
+ &- (17/6)n 3 + 12n 2 + (49/6)n
sign (5/2)n2 + (9/2)n

n2 + 2n
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2.5 Computational Cost for Matrix Upper Triangularization with Parallel Processing

Consider a dense matrix A c R rxc. Let R(ij,k) denote a plane rotation in plane (ij)
which annihilates the element ak by the Fast Givens method, where i # j, 1 < L j < r and
1 < k < c. R(ij,k) combines row i and row j such that a'ik = 0 in the resultant matrix
Al.

A ,'jk a' l. "'".. a'j,c J= ajk+l j
I jk a'i,k+ I ai aikl ...

or a] 'ka +,aj'

The cost of applying R(ij,k) via the Fast Givens method was already described in section
2.3.5 although it was not explicitly expressed in terms of parameters i, j, and k. The cost
for R(ij,k) is expressed in Table 2.5-1. It is noted that the cost is independent of
parameters i and j which stand for row numbers of vectors (row vectors) involved in the
operation (plane rotation). The cost rather depends on the column location of the
element annihilated by this operation and the column dimension, c, of the matrix (or
vectors).

Table 2.5-1 Cost for R(ij,k)

Operation Cost
x&- 2(c-k) + 19/2
+& - 2(c-k)+5
sign 3

2.5.1 Parallel Scheme for Application of R(ij,k)

There are a few schemes for applying R(ij,k) in parallel for matrix factorization
(triangularization). Two schemes from [7] were reviewed.

One scheme, known as "Sameh and Kuck's", is systematic and assumes that j = i-1.
Therefore, R(ij,k) = R(i,i-l,k). In other words, the scheme always picks rows i and i-1
as a pair to annihilate (by a plane rotation) the element at the location of the ib row and
kth column. Based on this rule, we can construct an annihilation pattern assuming that
there are enough processors available for simultaneous plane rotations. Figure 2.5.1-1
shows the parallel annihilation scheme by Sameh and Kuck on a dense r x c matrix,
where r = 10 and c = 6. The "x" marks represent elements above the main diagonal. The
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integer numbers indicate the step at which zeros are created (step of simultaneous
annihilations). For instance, at step 1 we only perform R(10,9,1) to annihilate the
element at (10,1). At step 9 however, we have as many as five simultaneous independent
plane rotations, namely R(2,1,1), R(4,3,2), R(6,5,3), R(8,7,4), and R(10,9,5).

I xxx x x xx x
9 x x x x x x x
8 10x x x x x x
7 9 11x x x x x
68 1012x x x x
5 7 9 1113 x x x
4 6 8 1012 14x x
3 5 7 9 11 1315x
2 4 6 8 10 121416
1 3 5 7 9 111315

Figure 2.5.1-1. Sameh and Kuck's Parallel Scheme

It is easily seen that at step t we perform rotations R(i,i-1,k) such that r+2k = i+t+ 1,
1i_5r, where r stands for the row dimension of the matrix A (which is 10 in this
example). Clearly, the total number of steps is r+c-2 if r>c and 2c-3 otherwise, where c
stands for the column dimension of A (which is 6 in this case).

Another scheme, known as "Greedy", is shown in Figure 2.5.1-2.

I xxx x x xx x
4 x x x x x x x
3 6 x x x x x x
25 8 x x x x x
2 4 7 10x x x x
14 6 9 11 x xx
1 3 5 8 10 12x x
1 3 5 7 9 1113x
124 6 8 101214
1 2 3 5 7 9 1113

Figure 2.5.1-2. Greedy Parallel Scheme

This scheme performs at each step as many rotations as possible, annihilating the
elements in each column from bottom to top and in each row from left to right. For
instance, at step 1 starting from the first column and the bottom (last) row, we can pick a

maximum of five pairs of row vectors from this matrix for five simultaneous independent
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annihilations. This yields five zeros at the locations (10,1), (9,1), (8,1), (7,1), and (6,1) as
marked with an integer "1" in the figure. At step 2 we can pick a maximum of two pairs
of row vectors from the available top five rows for the annihilation of two elements at
(4,1) and (5,1) while picking a maximum of two pairs of row vectors from the five
available bottom rows for the annihilation of elements at (9,2) and (10,2). There are
still two elements not annihilated in the first column at (3,1) and (2,1). At step 3 we can
annihilate the element at (3,1) since we can pick a pair of row vectors from the available
top three vectors. At the same time step, we can also pick two pairs of row vectors from
the five row vectors available between the 4th row and 8 th row to annihilate the elements
at (7,2) and (8,2). Again, at this same time step 3, we are also able to pick another pair
of row vectors to annihilate the element at (10,1). Expanding this idea, we can draw a

parallel annihilation pattern called "Greedy" in Figure 2.5.1-2.

The Greedy method seems to yield a more optimum result than Sameh and Kuck's
scheme for matrix triangularization. For instance, this method takes 14 steps while
Sameh and Kuck's method takes 16 steps for completion of triangularization with the
above 10 by 8 matrix. This method, however is not as systematic as Sameh and Kuck's.
As we see, the pairing of row vectors for a plane rotation requires more complicated
control than Sameh and Kuck's.

We apply these schemes on our system matrices assuming a full synchronization of
the processors at the end of each step. Here a step means a set of independent rotations
processed simultaneously by the processors. Let R(iI,jI,kj), R(i 2,j2 ,k2 ), ... , R(ip,kp),
p < r/2, be the rotations performed at the nth step. The cost (time) needed to achieve
this step will be the cost (time) for R(ij,k.in), where kmin = min{k1,k2,...,kP}.

2.5.2 Cost of a Local Time Update

The LTU matrix structure is redrawn in Figure 2.5.2-1. The mark "x" denotes a non-
zero element while the mark "o" denotes a zero element.

x q n I

X x X 0 0 0 0 0 0 X

q 0 x x 0 0 0 00 0 X

0 0 X 0 0 0 0 0 0 X

X X X X X X X X X X

0 X X 0 X X X X X X

n o ox 0 0 X X X X X

0 0 0 0 0 0 X X X X

0 0 0 0 0 0 0 X X X

0 0 0 0 0 0 0 0 X X

Figure 2.5.2-1. LTIJ Matrix Structure
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There are q(q+ 1)/2 non-zero elements under the main diagonal which are to be
annihilated. Applying Sameh and Kuck's scheme, we have the following annihilation
pattern drawn for the q = 3 case in Figure 2.5.2-2. The Greedy method also yields the
same result for the q = 3 case. For a larger q, two methods are expected to produce
slightly different results but neither method seems to yield a reasonable optimum
solution for a parallel process. This is due to the unique data structure of the LTU.

q n I

X X X 0 0 0 0 00 X
q o x x 0 0 0 0 00 X

00 X 0 0 0 0 00 X

1 3 5 x x x x x x x
o 2 4 0 x x x x x x

n 0 o 3 0 0 x x x x x

0 0 0 0 0 0 x x x X
0 0 0 0 0 0 0 x X X
0 00 0 0 0 0 0 X X

Figure 2.5.2-2. Sameh and Kuck's Scheme for an LTU (q=3 case)

One possible optimum solution (pattern) is presented in Table 2.5.2-3. This is based on
the realization that we can pair vectors in the following fashion, row 1 and row q+ 1, row
2 and row q + 2, ... , and row q and row 2q, simultaneously at every time step.

q 1

X x X 0 0 0 0 0 0 X

q o x x 0 0 0 0 0 0 x
0 0 X U C 0 0 0 (.1 X

1 2 3 x x x x x x x
o 1 2 0 x x x x x x

n o o 0 0 X X X x x
0 0 o 0 oX X x X I

0 0 0 0 0 0 0 X X X

000 0 0 0 0 0 x x

Figure 2.5.2-3. Optimum Annihilation Pattern (q=3 case)

Based on this optimum pattern, the cost for an upper triangularization in this parallel
process is evaluated. The step by step cost is listed as follows:

Step Cost in terms of R(ij,k)
1 R(q+ 1,1,1)
2 R(q + 1,2,2)

q R(q + 1,q,q)
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The cost for R(ij,k) was already obtained in Table 2.5-1. Converting the cost in R(...)
terms to an actual cost using Table 2.5-1, and adding the costs along arithmetic
operations we have a total cost in Table 2.5.2-1.

Table 2.5.2-1. Total Cost for a Local Time Update in a Parallel Process

Oper. Cost

X& [2(c-1) +19/2 + [2(c-2)+19/2] + -" + [2(c-q) +(19/2)] [ +(7/2)1

+ & - 12(c-1)+51 + [2(c-2)+51 + --- + 2(c-q)+5] - q(2c+4) q 2C 1 2

sign 3q

Where c = q+n+1, q and n are dimension parameters. See Figure 23.2-1.

2.5.3 Cost of a Local Measurement Update

The LMU matrix structure is redrawn in Figure 2.5.3-1. The mark "x" denotes a non-
zero element while the mark "o" denotes a zero element.

n I

X X X X X X X

0 X X X X X X

0 0 0 X X X X

0 0 0 0 X X X

0 0 0 0 0 X X

X X X X X X X

mx x x x x x x
X X X X X X X

Figure 2.5.3-1. LMU Matrix Structure

We apply the Greedy scheme first, but it is too complicated to derive a general cost
function in terms of the parameters, m and n in this parallel scheme. Instead, we
consider two typical system cases of m equal to 2 and 3.

For m = 3, we have a parallel annihilation pattern in Figure 2.5.3-2. The figure is
drawn for the case n = 6 as an example.
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n 01

2l 40 6 9 1 1

mn 1 3 5 7 9 11 13

1 2 4 6 8 10 12

I Figure 2.5.3-2. Greedy Scheme for an LMU (m=3, n=6 case)

The step-by-step cost for an upper triangularization of an LMU employing the Greedy
scheme is as follows:

Step Cost in terms of R (ij,k)I1 R(n +m,n +m-2, 1)
2 R(n+m-2,1,1)
3 R(n +m-1,n +m-2,2)34 R (n + m-2,2,2)

32n-1 R(n +m- l,n +m-2,n)
2n R(n + m-2,n,n)
2n+ 1 R(n +m- I,n +m-2,n +1)

Using Table 2.5-1 for the cost of R(ij,k) and adding all the terms above, we have a total
cost for an LMU (m=3) in Table 2.5.3-1. The parameter "c" in Table 2.5-1 is equivalent

to n+I1 in the LMU system.

I Table 2.5.3-1 Total Cost of an LMU using Greedy Scheme (m =3)

IOperation Cost
x & + 2n + 21n +19/2
+ & - 2n 2 +12n+ 5

sign 6n+ 3
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For m = 2, we have a parallel annihilation pattern in Figure 2.5.3-3. The figure is
drawn for n = 6 as an example.

II 1
n 1

X X X X X X X

0 X X X X X x

0 0 0 X X X X

0 0 0 0 X X X

0 0 0 0 0 X X

2 4 6 8 10 12 x
m 1 3 5 7 9 11 13

Figure 2.5.3-3. Greedy Scheme for an LMU (m=2, n=6 case)

As we see in figure 2.5.3-3, the Greedy scheme does not yield a parallel process.
Therefore, the total cost for this LMU system with m = 2 will be the same as the cost
obtained for a sequential process in Table 2.3.5.2-2 of section 2.3.5.2. Note that the total
cost for an LMU with m=3 using Greedy's parallel scheme is the same as this total cost.

Figure 2.5.3-4 shows the parallel annihilation pattern which results from using Sameh
& Kuck's scheme on the LMU system. Only the area annihilated by this process is
redrawn with an expansion. Here we must realize that Sameh and Kuck's rule, R(ij,k)
= R(i,i-l,k) cannot be applied for annihilation of elements from (n+1,1) to (n+1,n-1) at
row n + 1 because all elements of n"t row below the main diagonal are zero. Therefore,
the rule for pairing of vectors is modified for those elements; for example, R(n+ 1,1,1)
rather than R(n+ 1,n,1) for annihilation of the element at (n+ 1,1).

n

In m+2 m+4 m+6 x
m-i m+l m+3 m+5 m-1+2n

m

3 5 7 9 3+2n
2 4 6 8 2+2n
1 3 5 7 1+2n

Figure 2.5.3-4. Sameh and Kuck's scheme for an LMU, where an integer number
indicates the annihilation step and the mark x stands for an element which may not be
annihilated.
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I Again collecting the cost term step by step in the form of R(ij,k), we have the following:

Step Cost in terms of R(ij,k)
1 R(n+m,n+m-1,1)
2 R(n+ m-1,n + m-2,1)
3 R(n+m-2,n+m-3,1)

I m R(n+ 1,1,1)
m+1 R(n + 2,n + 1,2)

I m+2 R(n + 1,2,2)
m+3 R(n+2,n+ 1,3)
m+4 R(n + 1,3,3)

I m-1+2n R(n+2,n+ 1,n+ 1)

Referring to Table 2.5-1 for a cost conversion, and adding the cost for all steps above,
we have the total cost in Table 2.5.3-2. Note that the parameter c in Table 2.5-1 is
equivalent to n+ 1 for the LMU system.

Table 2.5.3-2 Total Cost of an LMU using Sameh and Kuck's Scheme

Operation Cost
x & + 2n(m+n+17/2) + (19/2)(m-1)
+ & - 2n(m+n+4) + 5(m-1)
sign 3(m-1 + 2n)

Where m and n are dimension parameters. Refer to Figure 2.5.3-1.
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2.5.4 Cost of a Global Time Update

For the purpose of cost evaluation, the system matrix is rearranged and shown in
Figure 2.5.4-1.

q n

X X X X X X X X X X X X X

q o x x X X X X X X X I X X
0 0 X X X X X X X X X X X

X X X X X X X X X X X X X

X X X 0 X X X X l X X X X

n-q x x x 0 0 X X X X l X l X

X x x 0 0 0 x X x X X X l

l X x 0 0 0 0 x l x X x x K

X X x 0 0 0 0 0 x X X X x

0 X X 00 0 0 0 0 x X K X

q o o x 0 0 0 0 00 0 x X

0 0 0 0 0 0 0 0 0 0 0 X X

x X X X X K X X K x X K X

q o x x x x X x X x x K X X
0 0 X X x X X X K X K X X

(M-I)q
X X X X X X X X X X X X X

q o x x x x x x X X X x X X
0 0 x x x x x x x X X X x

X X X 0 0 0 0 00 0 0 0 K

q o x x 00 0 0 0 0 0 0 0 x Blockr quirdforcaseB
0 0 X 00 00 00 0 00 X

Figure 2.5.4-1. GTU Matrix Structure (Rearranged)

Case A System:

The system matrix for case A is of dimension {[q+n+(M-1)q] x [q+n+ 1}.
Although the Greedy scheme will produce a more efficient result than Sameh and Kuck's
in annihilation, it is too complicated to derive a general cost function for the Greedy
scheme. Nonetheless, we attempt to calculate a cost for Sameh & Kuck's scheme as
follows. Revisiting section 2.5.1 which describes Sameh and Kuck's parallel scheme, we
draw a 10 by 8 rectangular matrix which shows the parallel scheme with key locations
marked with a # sign. The key location gives the maximum cost of annihilation among
the elements involved in a given annihilation step. This is due to the nature of the cost
function for R(ij,k) and the synchronized operation of processors. Again it is restated
that the cost for an R(ij,k) is a function of the k parameter only; neither i nor j affects
the cost.
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X X X X X X X X
9# X x x x x x x

9# 10# x x x x x x
7 9 11# x x x x x
6# 8 10 12# x x x x
5# 7 9 11 13# x x x
4# 6 8 10 12 14# x x
30 5 7 9 11 13 15# x
2# 4 6 8 10 12 14 16#
10 3 5 7 9 11 13 15

Figure 2.5.4-2. Sameh and Kuck's Parallel Scheme with Key Locations

Therefore, the overall cost for an upper triangularization of the matrix under this
parallel scheme is the sum of the costs for annihilation of the elements marked with a #
sign behind the step number in the figure.

Total Cost = Cost[ R(10,9,1) + R(9,8,1) + R(8,7,1) + R(7,6,1) + R(6,5,1)
+ R(5,4,1) + R(4,3,1) + R(3,2,1) + R(2,1,1) + R(3,2,2) + R(4,3,3)
+ R(5,4,4) + R(6,5,5) + R(7,6,6) + R(8,7,7) + R(9,8,8) ]

- Cost[ 9-R(O,9,1) + R(3,2,2) + R(4,3,3) + R(5,4,4) + R(6,5,5)
+ R(7,6,6) + R(8,7,7) + R(9,8,8) ]

Applying this idea to the system matrix (Case A), the key locations are marked as shown
in Figure 2.5.4-3. The overall cost of annihilation then is obtained by counting the
marked (#) locations along the column number. Although the marked key locations are
obtained failAy easily for the rectangular matrix shown in Figure 2.5.4-2, it is not obvious
how many locations should be marked on each q x (q + n + 1) block for the general case
of q and n. The right most or left most column location will be obtained by solving
linear equations. From the above Figure 2.5.4-2, it is noted that all the locations
annihilated in a given step lie on a straight line of slope -2. This is an important fact of
Sameh and Kuck's scheme and will be applied in finding key locations for the system.
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q n 1

X X X X g X g X g

q o x x x x x x x x x "q x (q + n + 1)) Block
0 0 X X X X X X X X X X X

X# X# X# x x x x x x x x x x

X# X# X# 0 x X x X x x x I X
n-q x# x x 0 0 x x x x x x x x

X# X X 0 0 0 x x X X x X X
x# x x 0 0 0 0 x x x x x n [n (q+n+1)] Block
X# X X 0 0 0 0 0 x X X X x
O X X 0 0 0 0 0 0 X X X X

q o o x 0 0 0 0 0 0 0 X X X
q0 0 0 0 0 0 0 0 0 0 0 X X

X# X# X x x X X X# X# X# X# X# x
q o x# x# X x x x x x# Z# X# x# x# 22dI q x (q + n + l1)] B lock

0 0 X X X X X X X X X X X
xf if i x x x x xf x x0 xf x x

q o x#x x X x X X i i I X if ?'(qx(q+n+1))Block

0 0 X X X X X X X X X X X

q o x# x x x x x x x x x x x M [q x (q+n+1)] Block

o a xx x I x x x i i x x x~ ~ Iqn1llc
0 0 X I X X I X I X I I X __

Figure 2.5.4-3. GTU Matrix (Case A) with Marked Key Locations

Finding the key locations in the [n x (q + n + 1)] block is straightforward. However, the
key locations in the 2 nd [q x (q+n+ 1)] block are not as obvious, especially for those on
rows q + n + 1 and q + n + 2. We solve for those locations by solving linear equations
based on the fact that the slope of the linear equation should be -2 as mentioned above.
The area of the [n x (q+n+ 1)] block and 2 "d [q x (q+n+ 1)] block is redrawn in Figure
2.5.4-4 to indicate critical locations on the top two rows of the 2d [q x (q+n+ 1)1 block.

X# X# X# 0 x x x x x x x x x
-q n I

n-qx# x x 0 0 o x x x x x x x

X# X X 0 0 0 0 I x x x x x n nx (q+n +l)]BIock

X_ X 1 0 0 0 0 0 X X I x X

0 X X 0 0 0 0 0 0 X X X X

q o o x 0 0 0 0 0 0 0 X X X
0 0 0 0 0 0 0 0 0 0 0 1 X

X# RIX x x x x LI x# x# x# x# x

o x# R2 x x X x x L2 x# x# x# X# 2*4 (q x (q+n+1)] I o ck

0 0 X X X X X X X X X X I

Figure 2.5.4-4. Critical Locations in 2 "d [q x (q+n+ 1)] Block

65



Critical locations are labeled with the letters R1, R2, L1, and 12 in the figure.

We solve for the exact column locations of the spots labeled Li and 12.
Imagine a coordinate system (c for a horizontal axis and r for a vertical axis) and
superimpose the coordinate system onto the above figure, such that the far bottom left
element in the figure coincides with the coordinates (1,1) in the coordinate system. Then
we can set up the following linear equations for Li and 12.

For Li, we have r = -2[c-(q+ 1)] + (n+q-1) Eq. 1
r=q Eq. 2
r=q-I Eq. 3

Solving equations 1 and 2 simultaneously for the unknown c,
q = -2[c-(q+l1] + (n+q-1)

then c is found to be c = (2q+n+ 1)/2.

Since c must be an integer, we round up the resultant real value to its closest integer.

Therefore, c = RU[(2q+n+1)/2],

where RU stands for a round up of argument. This c value represents the column
location of LI.

For L2, we solve equations 1 and 3 simultaneously. Then we have,

q-1 = 2[c-(q+1)] + (n+q-1)

and c is found to be c = (2q+n+2)/2.

Since c must be an integer, we round up the resultant real value to its closest integer.

Therefore, c = RU[(2q + n + 2)/2

This value of c represents the column location of 12.

Now we solve for the column locations of Ri and R2.

For RI, r = -2(c-1) + 2q Eq. 4

Solving equations 2 and 4 simultaneously for the unknown c, we have
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q -2(c-1) + 2q,

then c is found to be c = (q+ 2)/2.

Since c must be an integer, we round down the resultant real value to its closest integer.

Therefore, c = RD[(q + 2)/2],

where RD stands for a round down of argument. This c value represents the column
location of RI.

For R2, we solve equations 4 and 3 simultaneously. Then we have,

q-1 = -2(c-1) + 2q

and c is found to be c = (q+3)/2.

Since c must be an integer, we round down the resulting real value to its closest integer.

Therefore, c = RD[(q+3)/2]

This c value represents the column locatioj of R2.

Now, we need to find the critical locations in the 3' [q x (q+n+ 1)1 block. The area of
the 2nd and 3' [q x (q+n+ 1)] blocks are redrawn in Figure 2.5.4-5 to indicate the critical
locations in the 3' block.

q nI

x# x# x x x x x x# x# X# X# X# x
q o x# x# x x x x x x# x# x# x# x# 2d Iqx(q+n+1)] Block

o 0 X X X X X X I X I X X

x#R x x x x x x x x x x x
q o R4 x x x x x x x x x x x 3 q x (q+n+1)] Block

O 0 x x x x x x x x x x x

Figure 2.5.4-5. Critical Locations in 3' [q x (q+n+ 1)] Block

The column locations of the critical spots labeled with R3 and R4 are obtained in a
similar way. Again the same coordinate system is superimposed on Figure 2.5.4-4 such
that the far bottom left element of the figure coincides with the coordinates (1,1) in the
coordinate system. Then we can set up equations for the column locations of the critical
spots R3 and R4.
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For R3, we have r = -2(c-1) + (2q-1) Eq. 5

Solving these two equations simultaneously for the, unknown c, we find c = (q+ 1)/2.

Since c must be an integer, we round down the resultant real value to its closest integer.
Then we have,

3c = RD[(q+ 1)/2],

where RD stands for a round down of argument. This value of c represents the column
location of R3.

For R4, we solve equations 5 and 3 simultaneously. Then we have,

q-1 = -2(c-1) + (2q-1)

and c is found to beI c = (q+2)/2.

Since c must be an integer, we round down the resulting real value to its closest integer.

Therefore, c = RD[(q+2)/2]

This value of c represents the column location of R4. Note that the column locations we
obtained for R3 and R4 are also applicable to the 4Kh through Mth [q x (n+ q+ 1)] block.

The total cost for the GTU system (Case A), is the sum of each block cost as follows:

1) Cost of [n x (q+n+ 1)] Block

Counting the key marked locations and adding the individual cost required to annihilate
the key located elements, we have the following cost equation,

Cost = (n-q)R(ij,1) + 2R(ij,2) + 2R(ij,3) + .... + 2R(ij,q)

where i and j are arbitrary and do not affect the cost.

Converting this equation using Table 2.5-1, we present the total cost in Table 2.5.4-1.
The parameter in Table 2.5-1 is equivalent to q+ n+ 1 for this block.
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ITable 2.5.4- 1. Cost of [n x (q +n + 1)] Block

IOperation Count
x & + 2n2 + (4q+ 11/2)n + (15/2)q - 19
+ & - 2n + (4q +1)n +3q- 10

jsign 3n +3q -6

2) Cost of 2nd [q x (q + n+ 1)] Block

I Counting the key marked locations and adding the individual cost required to
annihilate the key located elements, we have the following cost equation.

I ~Cost = R(ij,) + R(ij,2) + .. + R(ij,kl) + R(ij,q+n) + R(ij,q+n-1) + .. + R(ij,k3)
+ R(ij,2) + R(ij,3) + .. + R(ij,k2) + R(ij,q+n+ 1) + R(ij,q+n) + .. + R(ij,k4)

I Where i and j are arbitrary and do not affect the cost.

k1 = RD[(q+2)/2], k2 = RD[(q+2)/2],I kU = RU[(2q+n+1)/2], k4 = RU[(2q+n+2)/2].

I Converting this equation using Table 2.5-1, we present the total cost in Table 2.5.4-2.
The parameter in Table 2.5-1 is equivalent to q + n+ 1 for this block.

Table 2.5.4-2. Cost of 2nd [n x (q + n+ 1)] Block

IOperation Cost

x & +2c 2 + 2(k 1 +k2-k3-k4 + 19/2)c - kl1(k 1-17/2) - k2(k2-17/2)I + k3(k3-21/2) + k4(k4 -21/2) + 2

+ & - 2c2 + 2(kl1+ k2-k3-k4 +5)c - k 1(kl1-4) - k2(k2-4)I + k3(k3-6) + k4(k4-6) + 2

sign 3(kl +k2-k3-k4 +2c)

where c q q+n+1I and k I to k4 are defined as above.
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I

I 3) Cost of 3rd [q x (q+n+ 1)] Block

Counting the key marked locations and adding the individual cost required to
annihilate the key located elements, we have the following cost equation.

I Cost = R(ij,1) + R(ij,2) + ... + R(ij,k5) + R(ij,2) + R(ij,3) + ... + R(ij,k6)

where i and j are arbitrary and

k5 = RD[(q+ 1)/2], k6 = RD[(q+2)/2].

Converting this equation using Table 2.5-1, we present the total cost in Table 2.5.4-3.
The parameter in Table 2.5-1 is equivalent to q + n +1 for this block.

Table 2.5.4-3. Cost of 3 [n x (q+n+ 1)] Block

Operation Cost

x & + 2(k5+k6-1)c - k5(k5-17/2) - k6(k6-17/2) - 15/2+ & - 2(K5+k6-1)c - k5(k5-4) - k6(k6-4) - 3
sign 3(k5+k6-1)

where c = q + n + 1 and k5 and k6 are defined as above.

Note that the cost for successive blocks (i.e., 4
'h block, 5 h block and so on) as well as the

last block which is used only in the case B system, is the same as the cost for the 31
block obtained in Table 2.5.4-3.

Case B System:

The system matrix for case B is of dimension {([q+n+(M-1)q+q] x [q+n+l]). The
extra block used in addition to the case A system is the far bottom block shown in
Figure 2.5.4-1. The cost of this extra block is the same as the cost of the 3 'd block found
previously. Therefore, no new calculation is necessary other than combining all of their
individual costs to obtain a total cost.
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Finally, the total cost for an upper triangularization of GTU in a parallel process is

obtained as follows:

1) System Case A

Total cost = Cost of [n x (q+n+ 1)] block + Cost of 2' [q x (q+n+1)] block
+ (M-2) times the cost of 3' [q x (q+n+ 1)] block

2) System Case B

Total Cost = Total Cost of Case A + Cost of 3' [q x (q+na 1)] block

Combining all costs according to these equations, the total cost is presented in Table
2.5.4-4.

Table 2.5.4-4. Total Cost of GTU in Parallel Process Block

Operation Total Cost
Case A Case B

x & + 2n2 + [4q+(I1/2)]n + (15/2)q - 19 2n2 + (4q+11/2)n+ (15/2)q - 19
+ 20 + 2(kl+k2-k3-k4+19/2)c + 20 + 2(kl+k2-k3-k4+19/2)c
- kl[kl-17/2] - k2(k2 -17/2) - kl(kl-17/2) - k2(k2-(17/2)
+ k3(k3-21/2) + k4(k4-21/2) + 2 + k3(k3-21/2) + k4(k4-21/2) + 2
+ 2(M-2Xk5 + k6-1)c - (M-2)k5(kS-17/2) + 2(M-lXkS + k6-1)c - (M-l)0.(k-17/2)
- (M-2)k6(k0-17/2) - 15(M-2)/2 - (M-)k6(k6-17/2) - 15(M-1)/2

+ & - 2n2 + (4q+l)n + 3q - 10 2n2 
+ (4q+l)n + 3q - 10

+ 2c2 + 2(kl+k2-k3-k4+5)c + 2c2 + 2(kl+k2-k3-k4+5)c
- kl(kl-4) - k2(k24) + k3(k3-6) - kl(kl4) - k2(k24) + k3(k3-6)
+ k4(k4-6) + 2 + 2c(M-2)(k5+k6-1) + k4(k4-.6) + 2 + 2c(M-lXk5+k6-1)
- (M-2)kS(k5-4) -(M-2)k6(k6-4) - 3(M-2) - (M-1)k(04) - (M-l)k6(k6-4) - 3(M-1)

sign 3n + 3q -6 + 3(kl+k2-k3-k4+2c) 3n + 3q -6 + 3(kl+k2-k3-k4+2c)
+ 3(M-2)(k5+k6-1) + 3(M-lXkS+k6-1)

Where c - q+n+1, kI = RD[(q+2)/21, k2 = RD((q+3)/21, k3 - RU[(2q+n+1)/2),
k4 = RUI(2q+n+2)/2], k5 - RDI(q+1)/2], k6 - RDI(q+2)/2
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2.5.5 Cost of a Global Measurement Update

I. First Method

Sameh & Kuck's scheme is applied with a modification. A R(ij,k) is now
implemented with a R(i,i-n,k) rather than with R(i,i-l,k). The GMU matrix system of
dimension [(M+ 1)n x (n+ 1)] is shown in Figure 2.3.5.4-1. Although there are M+ 1
identical blocks in the GMU system, we take the first three blocks to show the critical
locations as defined in section 2.5.4.

n1
X : X X X X X

0 l X X X X X

O o l X X X X

no o o x x x x 18 Block

o 0 0 0 0 X xo o o 0 o x x

x# x# x# x# x# X# x
o X# X# X# X#X# x#
0 0 X X X X X

n o o o x x x x 20d Block
0 0 0 0 X X X

0 0 0 0 0 X X

x# x# R5 x x x x
0 x# x# R6 x x x
0 0 x x x x x

n 0 0 0 x x x x 3rd Block

0 0 00 x x x
0 0 0 00 x x

Figure 2.5.5-1. Critical Locations in GMU Sub-blocks

Figure 2.5.5-1 shows the key and critical locations for the 2
"d and 3' blocks. The

locations marked with a # sign are key locations and critical locations are labeled R5
and R6. We first find the exact column locations of R5 and R6.
As we did in section 2.5.4, imagine a coordinate system having a horizontal axis c and
vertical axis r and superimpose it onto Figure 2.5.5-1 such that the element (or location)
of the far bottom left corner coincides with the coordinate (1,1). Then we can set up
linear equations for the column locations of R5 and R6.

For R5, we have following equations.
r = -2(c-1) + (2n-1)
r=n

Solving these two equations simultaneously, we find
c = (n+1)/2.
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Since c must be an integer, we convert it to its closest integer value using a round down
function.

c = RD[(n+ 1)/2]

The integer c represents the column location of R5.
We assign

k7 = RD[(n+ 1)/21.

For R6, we have following equations:

r = -2(c-1) + (2n-1)
r = n-I

Solving these two equations simultaneously, we find

c = (n+2)/2

Since c must be an integer, we convert it to its closest integer value using a round down
function.

c = RD[(n+2)/2]

The integer c represents the column location of R6.
We assign

k8 = RD[(n+2)/2].

The cost for a total annihilation of each block is as follows:
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1) Cost of 2"d Block

Cost = R(ij,1) + R(ij,2) + R(ij,3) + ... + R(ij,n)
+ R(ij,2) + R(ij,3) + .... + R(ij,n+ 1)

Convening these terms to cost terms using Table 2.5-1 and simplifying them, we have the
result (noting that the parameter c in Table 2.5-1 is equivalea to (n+ 1) for this block)

Operation Cost
x & + n(4c-2n+ 15)
+ &- 2n(2c-n+3)
sign 6n

2) Cost of 3' Block

Cost = R(ij,1) + R(ij,2) + R(ij,3) + ... + R(ij,k7)
+ R(ij,2) + R(ij,3) + .... + R(ij,k8)

where k7 and k8 are defined as above.

Converting these terms to cost terms using Table 2.5-1 and simplifying, we have the
result (Noting that the parameter c in Table 2.5-1 is equivalent to (n+ 1) for this block)

Operation Cost
x & + (2c-k7+ 17/2)k7 + (2c-k8+ 15/2)(k8-1)
+ & - (2c-k7+4)k7 + (2c-k8+3)(k8-1)
sign 3(k7+k8-1)

The cost for each successive block (4 th , 
5 th , M+ 1) is equal to the cost for the 3'0

block just found.

Therefore, the total cost for an upper triangularization of a GMU in a parallel process
with a modified Sameh and Kuck's scheme is as follows.

Total Cost for a GMU = Cost of 2" Block + (M-1) times the Cost of 3' Block

Using the cost tables obtained above for the 2nd and 3 blocks, and adding cost terms
according to this equation, we have Table 2.5.5-1 for a total GMU cost.
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i

U Table 2.5.5-1. Cost of a GMU using Modified Sameh and Kuck's Scheme

Operation Cost

x & (2n + 19)n + (M-l)k7(2n-k7 + 21/2)
+ (M-1XkS-1X2n-k8+ 19/2)

+ & - 2n(n+S) + (M-l)k7(2n-k7+6) + (M-lXk-lX2n-k+5)

sign 6n + 3(M-1Xk7+k8-i)

The parameters in Table 2.5.5-1 correspond to those of Figure 2.3.5.4-1 which shows the
GMU system matrix structure. The parameters k7 and k8 are defined as,

k7 = RD[(n+ 1)/2], k8 = RD [(n+2)/2],

where RD stands for the round down function.

II. Second Method

Now, we present another approach for a parallel process (annihilation) of a GMU
system. This method takes advantage of the uniqueness of the GMU data structure. A
GMU system matrix consists of (M+ 1) identical standard blocks, [n x (n+ 1)] in
dimension. Blocks are paired together for a parallel annihilation process. One example
of pairing blocks is shown below.

n+I n+1 n+l
1st Block 3rd Block 5th BlockIx x x x x x x x x x x x x x x x x x x x x

o x x x X X X 0 X X x X x X 0 x x x x X
0 0 x x X x x 0 0 x X x x X 0 0 X x x X X

o o 0 0 X X X X 0 0 0 x x x x 0 0 0 x X x X

0 0 0 0 x X X 0 0 0 0 X x x 0 0 0 0 x X x
o 0 0 0 0 x 0 0 0 0 0 X X 0 0 0 0 0 x x

2nd Block 4th Block 6th Block

1 2 3 4 5 6 x 1 2 3 4 5 6 10 1 2 3 4 5 6 11
o 1 2 3 4 5 9 o 1 2 3 4 5 9 o 1 2 3 4 5 9
o o 1 2 3 4 8 o o l 2 3 4 8 o o 1 2 3 4 8

n o o o 1237 2 3 7 o o o 1 2 3 7
o o o o 1 2 7 o o o o 1 2 7 o o o o 1 2 7
0 0 0 0 o 1 7 o o a o o 1 7 o o o o o 1 7

and so on.
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The integer number in even numbered blocks indicates the step of annihilation
between the pair of blocks. This process can be done simultaneously among all even
numbered blocks. After half of the (M+ 1) blocks are processed in this way, we again
pair blocks among unprocessed blocks and another simultaneous annihilation is done.
This process continues until all blocks have been processed.

Following this idea, we observe that:

1. The number of steps required to annihilate the n x n area, within the
standard block, is n.

2. The number of steps required for the last column (dimension = n) is not unique.
The number of steps required to annihilate a column of dimension n can be
expressed as below.

Column Dimension (n) Number of Steps Required
n =2 1

20 < n< 2' 2
21 < n5 <2 2  3
22 < n < 23  4
23 < n < 24  5

2P-I < n < 2P p+1

where p is an integer, p = RU(log 2n), where RU stands for round up of argument.

3. For (M+ 1) standard blocks, (M + 1)/2 standard blocks can be simultaneously
processed in the first round, then (M+ 1)/4 blocks in the second round, and
(M+ 1)/8 blocks in the third round and so on, provided that M+ 1 = 2 q, where q is
an integer. For a general M, let M' = M + 1 then we have the following table.

Number of Standard Blocks (M') Number of Round Required
(to exhaust blocks)

M= 0
20< M' < 21 1
2' < M' s 22 2
22 < M' < 23 3
23 < M'< 24 4

2 q Il < M' < 2 q q

where q is an integer, q = RU(Iog 2 M'). "Round" stands for a unit period required
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I
I

to annihilate a standard block completely.

4. The number of steps required to annihilate the second block is one step (the last
step) less than the number required for the other standard block. (The element at
the top right corner is not annihilated.)

The step by step cost is listed for a total annihilation of a standard block.

Step Cost in terms of R(ij,k)

I 1 R(3n+ 1,2n+ 1,1) ;Expressed based on 4th block.
2 R(3n+ 1,2n+2,1)
3 R(3n + 1,2n + 3,3)

3 n R(3n + 1,3n,n)
n+1 R(4n,3n+ 1,n+ 1)

I n+1+RU(og 2 n) R(3n+ 1,n+ 1,n+ 1)

where RU Stands for a round up function.

Adding the above step by step cost terms and converting the sum to an actual cost using
Table 2.5-1, we have the total cost for a standard block in Table 2.5.5-2. The parameter
c in Table 2.5-1 represents n+ 1 in the standard block.

Table 2.5.5-2 Cost for a total annihilation of a standard block

Operation Count

x & + (n+21/2)n + (19/2)[RU(log 2 n)+ 1]
+ & - (n+6)n + 5[RU(log 2 n)+1]
sign 3[n +1+ RU(iog 2 n)]

The total cost for an upper triangularization of a GMU system will then be the
number of round ups (defined above in item 3) times the cost of a standard block. The
number of round ups for M+ 1 blocks was found to be RU[log 2 (M+ 1)]. Table 2.5.5-3
shows the total cost of GMU system using the second method.
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I Table 2.5.5-3. Cost of a GMU using 2nd Method

E Operation 

Count

x & +RU[log 2 (M+1)]{(n+21/2)n + (19/2)[RU(1og 2 n) +1]) - 19/2
+ &*- RU[Iog 2 (M+1)]{(n+6)n + 5[RU(Iog2 n)+ 11) - 5
sign 3RU1log 2 (M+ 1)][n+ 1+RU(log 2 n)] - 3
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2.6 Implementation of Parallel Processing

Parallel processing for speedup of matrix factorization (triangularization) employing
the Fast Givens method can be implemented in electronic hardware. As we see from
the cost analysis section, a reduction of cost (or speedup) can be obtained in two ways;
first, from use of a special hardware processor (cell) which is designed for an optimum
plane rotation, and second, from use of multiple processors for parallel processing. We
attempt to implement both methods together for best processing performance.

2.6.1 Cell Structure and Operation

The block diagram of a hardware cell is shown in Figure 2.6.1-1. This cell is a
hardware version of the Fast Givens algorithm shown in Figure 2.3.4-1. The cell consists
of floating point multipliers, dividers, adders, a comparator, multiplexers, sign changers,
and vector and shift registers with sequence control. The cell also contains a local
memory large enough to hold two identity tokens (tp and t.), two scale factors (dp and
d.), a column number (p) which indicates the column location where a zero would be
produced, and two rows of vectors (ap,j..,apN, aQl....aQ,N). The plane rotation between
these two rows is done completely in this cell, producing two rows of altered elements.
The element indicated by the column number P of the second row (Q) vector becomes a
zero as a result of the plane rotation. The operation of the cell is briefly stated as
follows:

1. The data stream mentioned above is entered into the cell's memory from either a host
computer or a neighbor cell.

2. The comparator output signal labeled as " > 1" serves to select the proper mode of
data before the actual matrix multiplication is performed by the multiplier and adder
arrays in the bottom section of the cell.

3. Two rows of altered vectors, ap' and a0 ' are generated as a result of the matrix
multiplication process.

4. The comparator output signal, y > 1, is also used to identify the row information of the
newly generated output vectors (ap', aQ') and to control the sequence of outgoing data
to a neighbor cell or a host computer. For instance, if the signal, y > 1, is true (or 1)
then the contents of ap' are interchanged with the contents of a0 ' before being sent
out. If the signal, y > 1, is not true (or 0), then no action is required.
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iFigure 2.6.1-1. Block diagram of the Hardware Cell
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I 2.6.2 Cost of a Plane Rotation Using a Single Cell

The cost of a plane rotation, R(ij,k), is shown below in Table 2.6.2-1. The notation,
R(ij,k), represents the Fast Givens Rotation between the ith and jth rows to produce a
zero at the (i,k) location. This cost is based on a sequential execution of the algorithm
(shown in Table 2.3.4-1) for a single plane rotation. As we see, the cost depends on two
parameters, c and k. The parameter c represents the length of the i and j row vectors,
and k represents the column location of an element annihilated by the rotation.

Table 2.6.2-1. Cost of a Plane Rotation in Sequential Execution

Operation Cost
x & . 2(c-k) + 19/2
+ &- 2(c-k) + 5isign 3

Therefore, the cost varies with the column location of the annihilated element.
Assuming total annihilation of a vector of length c, the average cost will be,

Operation Cost
x & +(c-I) + 19/2
+ & - (c-1) + 5

isign 3

But this cost is drastically reduced (time step wise) by executing the same rotation using
i the cell we propose in Figure 2.6.1-1. The new cost for an R(ij,k) rotation will be:

Operation Cost
x &+ 5
+&*- 2

Therefore, the new cost for a plane rotation, R(ij,k), is always a constant and a
minimum (7 arithmetic operation cycles). This is due to the internal parallel structure of
the cell. Notice that this new cost is even lower that the residual cost required in a
sequential execution for a plane rotation. Here, the term "residual" refers to the
constant cost terms in the cost table (Table 2.6.2-1).

2.6.3 Architecture of a Parallel System of Cells

The parallel process for a matrix factorization can be implemented using multiple
cells simultaneously. Theoretically, m/2 cells are required for the maximum speed of
factorization on a matrix of m by n in size. However, it may not be economically

feasible when m is so large compared with n, such as when m > 2n. A possible
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Iunderlying architecture is a SIMD/MIMD machine on the order of n cells which
communicates through the shared memory of a host computer.

IWe propose an implementation of Sameh and Kuck's scheme on a linear array of
processing cells. The order of annihilation by the scheme is shown for a matrix of 10 by
8 below. An integer represents the order of time step for an annihilation at which
zeroes are created at the respective locations. The time interval of each step is uniform
(7 arithmetic operations) due to the internal structure of the cell (all the rotated vector

I elements are processed simultaneously -- independent of column location).

8 10
7 9

6 8 1012
5 7 9 1113*
4 6 8 101214
3 5 7 9 11 13 15 *

2 4 6 8 10 12 14 16
1 3 5 7 9 11 13 15

I There is an obvious solution which makes use of an array of n cells, each cell Ck

performing all the rotations R(i,i-l,k), k+ 1i_<n. The notation, R(i,i-l,k), represents the
I Givens Rotation between rows i and (i-1) to produce a zero at the (i,k) location. This

repartition of the rotations among the cells is represented by Figure 2.6.3-1.

I
I C *

C1C2'
C1 C2C3'
C1IC2C3 C4
C1 C2 C3 C4 C5
C1 C2 C3 C4 C5 C6

CC1 C2 C3 C4 C5 C6 C7
C1 C2 C3 C4 C5 C6 C7 C8

SC1 C2 C3 C4 C5 C6 C7 C8

IFigure 2.6.3-1. Partition of Annihilations with n Processing Cells
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The number of cells required can be further reduced. Rather than using n cells per
column as shown above, it can be done with less cells if we let the rows of the matrix
move backwards as soon as all of the rotations of the first column are completed. The
repartition of the rotations among the cells is given in Figure 2.6.3-2.

C1'
C1 C1
CI C2 C1
C1 C2 C2 C1
C1 C2 C3 C2 C1
C1 C2 C3C3 C2 C1
C1 C2 C3 C4 C3 C2 C1
C1 C2 C3 C4 C4 C3 C2 C1
C1 C2 C3 C4 C5 C4 C3 C2

Figure 2.6.3-2. Partition of Annihilations with less than n Processing Cells

This method loses its advantage of less cells being required over the former n-cell
method when the number of rows of the matrix grows. Eventually, this method requires
n cells just like the former method. The Table 2.6.3-1 below shows a comparison among
the three methods described.

Table 2.6.3-1. Comparison of Partition Methods

Matrix Size Number of Cells Required
m/2 cell n cell Less cell

8x8 4 8 4
10x8 5 8 5
16x8 8 8 8
20 x 8 10 8 8
30 x 8 15 8 8
40 x 8 20 8 8
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We propose to implement the last method (less than n) with a linear array of cells as
depicted in Figure 2.6.3-3.

Figure 2.6.3-3. Linear Array of Cells

There are two phases in the operation of a cell. In the beginning phase, at each time
step t5n-1, a row of data moves rightward from the host computer, and each cell C,
operates as indicated in the following.

ai n a1  a2 aou t

" Perform a rotation between rows a, and a2 defined as
R(a 2,a,,k), where k is chosen to annihilate the leftmost non-zero
element of a2.

" Send a2 to the right: ao,, .- a2
" Store a, and ai, in the local memory: a2 ,- a,, a1 - a.,

In the last phase, from step t = n up to t = 2n-2, the flow of data is reversed and the cells
operate in a similar fashion. During this phase, cell C1 delivers to the host a new row of
the resulting matrix A' at each time step.
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3. Conclusions

Creating accurate tracks of multiple airborne targets from multiple sensors, in real
time, car, be a computationally demanding process. Measurements from each sensor
must first be correlated with each track. Then, after a correct association is made, the
track can be updated to derive a new estimate. A variety of algorithms for performing
these processes of "data association" and "track updating" have been described in the
literature. Our approach is to perform hypothesis testing based upon the traditional
method of Maximum Likelihood, but within a distributed filtering environment. This
results in a large reduction in the number of floating point computations required to
generate the complete set of likelihood function values.

This final report describes results obtained over a 6 month Phase I project. The
primary mathematical operation performed by the distributed filter is matrix
triangularization. Thus, this research focused on understanding algorithms for
performing this operation, as well as their parallelization.

Three methods based on the orthogonal reduction were reviewed. They are the
Householder, Givens, and Fast Givens methods. Gaussian elimination seemed to be an
attractive alternative in that it is less costly than those based on orthogonal reduction,
but this method is not numerically stable and requires pivoting.

An analysis of computational cost was performed for Householder and Fast Givens
methods. Although the Householder method is superior to the Fast Givens method for a
generally dense matrix factorization, the Fast Givens method well outperforms the
Householder in triangularizing the Local Time Update, Local Measurement Update, and
Global Measurement Update matrices of our distributed filter. On the other hand,
triangularization of the filter's Global Time Update matrix was more efficiently done
using the Householder transformation. This is due to the sparse data structure of the
matrix.

The concept of downdating and updating was reviewed along with algorithms from
LINPACK. While the updating process is no different from a total annihilation process
of the newly added observations (appearing as rows of data), downdating is a backwards
process which removes the contribution made by the eliminated observations, from the
transformed (triangularized) matrix. The cost of downdating was obtained based on the
subroutine "SCHDD".from LINPACK.

The "Sameh and Kuck's" scheme and "Greedy" scheme were reviewed as possibilities
for parallelization. Both schemes were modified in order to best suit the block upper-
triangular nature of the system matrices. Finally, a hardware processing "cell" which
performs a plane rotation using the Fast Givens method, was designed. A linear array of
cells following Sameh and Kuck's parallel scheme was proposed.
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Although positive results were obtained, it is thought that the funding needed to
complete the development of a prototype processor would be prohibitively high under
the auspices of this Small Business Innovative Research program. A customized VLSI
design approach would probably entail funding at the level of 10 million dollars, whereas
Phase I1 SBIR funding is typically at the level of 500 thousand dollars. Thus, we
recommend that an off-the-shelf multi-processor be purchased (or Government
furnished) in Phase II, with time better spent in developing efficient code for using it (to
perform the triangularization process in parallel to the fullest extent possible).
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